###
中国临床研究英文版:2024,37(11):1705-1708
本文二维码信息
码上扫一扫!
APACHEⅡ评分、IL-6与T淋巴细胞亚群联合构建脓毒症病情严重程度的预测模型
(1. 安徽医科大学安庆医学中心 安庆市立医院重症医学科,安徽 安庆 246003;2. 安庆市立医院急诊科,安徽 安庆 246003)
Construction of a predictive model for the severity of sepsis based on APACHE Ⅱ score, IL-6, and T lymphocyte subsets
摘要
本文已被:浏览 15次   下载 6
Received:June 24, 2024   Published Online:November 20, 2024
中文摘要: 目的 急性生理学和慢性健康状况评分(APACHEⅡ评分)、白介素-6(IL-6)与T淋巴细胞亚群联合构建脓毒症病情严重程度的预测模型,并评价模型的效能。方法 选取2021年1月至2023年9月安庆市立医院收治的脓毒症患者225例为研究对象,测定确诊后24 h内IL-6、T淋巴细胞亚群(CD4+、CD8+、CD4+/CD8+)、C-反应蛋白(CRP)、降钙素原(PCT)和APACHEⅡ评分;依据Sepsis-3.0诊断标准将其分为脓毒症组(109例)和脓毒性休克组(116例),根据logistic回归分析选择变量并构建脓毒症病情严重程度的预测模型,采用校准图和决策曲线分析评价模型的拟合度和临床价值。结果 脓毒性休克组CD4+、CD4+/CD8+水平低于脓毒症组,CPR、PCT、IL-6、APACHEⅡ评分高于脓毒症组(P<0.05);构建的脓毒症严重程度预测模型为:ln[P/(1-P)]=0.999+0.054×APACHEⅡ评分-0.054×CD4+ -0.18×CD4+/CD8++0.001×IL-6。校准图和决策曲线图表明模型具有良好的拟合度和临床价值。结论 由CD4+、CD4+/CD8+、IL-6和APACHEⅡ评分构建的预测模型可用于早期评估脓毒症病情的严重程度,为临床诊断及治疗提供帮助。
Abstract:Objective To construct a predictive model for the severity of sepsis using the Acute Physiology and Chronic Health EvaluationⅡ (APACHEⅡ) score, interleukin-6 (IL-6), and T lymphocyte subsets, and to evaluate the model's effectiveness. Methods A total of 225 patients with sepsis admitted to the Anqing Municipal Hospital from January 2021 to September 2023 were selected as the study subjects. IL-6, T lymphocyte subsets (CD4+, CD8+, CD4+/CD8+), C-reactive protein (CRP), procalcitonin (PCT), and APACHEⅡ scores were measured within 24 hours after diagnosis. Based on the Sepsis-3.0 diagnostic criteria, patients were divided into the sepsis group (109 cases) and the septic shock group (116 cases). Logistic regression analysis was used to select variables and construct a predictive model for the severity of sepsis. Calibration plots and decision curve analysis were employed to evaluate the model's fit and clinical value. Results The levels of CD4+ and CD4+/CD8+ in the septic shock group were lower than those in the sepsis group, while CRP, PCT, IL-6, and APACHEⅡ scores were higher in the septic shock group than in the sepsis group (P<0.05). The constructed predictive model was as follows: ln[P/(1-P)]=0.999+0.054×APACHEⅡ score-0.054×CD4+-0.18×CD4+/CD8++0.001×IL-6. Calibration plots and decision curve analyses indicated that the model had good fit and clinical value. Conclusion The predictive model composed of CD4+, CD4+/CD8+, IL-6, and APACHEⅡ score can be used for early assessment of the severity of sepsis, providing assistance for clinical diagnosis and treatment.
文章编号:     中图分类号:R631    文献标志码:A
基金项目:安徽省安庆市科学技术局科技计划项目(2021Z2015);皖南医学院校级科研项目(WK2023JXYY026)
引用文本:


Scan with WeChat

Scan with WeChat