###
中国临床研究:2025,38(6):901-905
本文二维码信息
码上扫一扫!
基于低氧参数构建阻塞性睡眠呼吸暂停患者睡眠分期预测模型
(天津医科大学总医院呼吸与危重症医学科, 天津 300052)
Construction of a sleep staging prediction model for obstructive sleep apnea patients based on hypoxia parameters
(Department of Respiratory and Critical Care Medicine,Tianjin Medical University General Hospital,Tianjin 300052,China)
摘要
本文已被:浏览 21次   下载 19
投稿时间:2024-10-07   网络发布日期:2025-06-20
中文摘要: 目的 比较阻塞性睡眠呼吸暂停(OSA)患者快速眼动(REM)与非快速眼动(NREM)睡眠间低氧参数差异,并构建人工神经网络(ANN)睡眠分期预测模型。方法 回顾性分析2022年6月至2023年10月在天津医科大学总医院睡眠中心接受整夜多导睡眠监测(PSG)的成年患者86例,导出PSG数据文件至Matlab软件分析,提取伴有脉搏血氧饱和度(SpO2)下降(氧降)的REM(2 023个)和NREM(10 075个)事件,分析REM和NREM低氧参数的差异,ANN模型构建采用前馈结构,结合多层感知器反向传播算法。使用受试者工作特征(ROC)曲线评估预测性能。结果 与NREM低氧参数相比,REM SpO2的最低值(e?minSpO2)、回升持续时间(r.DSpO2)较低(P<0.05),SpO2的下降幅度(ΔSpO2)、下降持续时间(d.DSpO2)、<90%持续时间(T90)、下降时<90%持续时间(d.T90)、回升时<90%持续时间(r.T90)、<90%曲线下面积(ST90)、下降时<90%曲线下面积(d.ST90)、回升时<90%曲线下面积(r.ST90)以及氧降速率(ODR)、复氧速率(ORR)较高(P<0.05);ANN模型测试集预测REM睡眠的准确率为84.00%,曲线下面积(AUC)为0.73,敏感度、特异度、阳性预测值及阴性预测值分别为0.11、0.99、0.65、0.85。结论 OSA患者REM与NREM睡眠低氧参数存在差异,基于此可构建ANN预测模型,实现便捷、准确、快速地识别睡眠分期,为临床睡眠相关疾病的诊治提供参考。
Abstract:Objective To compare the differences in hypoxia parameters between rapid eye movement(REM)and non - rapid eye movement(NREM)sleep stages in patients with obstructive sleep apnea(OSA)and to construct an artificial neural network(ANN)sleep staging prediction model. Methods A retrospective analysis was performed for86 adult patients who underwent overnight polysomnography(PSG),and exported PSG data files to Matlab software for analysis,and the REM staging events(2 023)and NREM staging events(10 075)with decreased pulse oxygensaturation(SpO2)were extracted. The differences of hypoxia parameters between REM and NREM were analyzed. The ANN model was constructed using a feed-forward structure incorporating a multilayer perceptron(MLP)with a back-propagation algorithm. Predictive performance was assessed using receiver operating characteristic(ROC)curves.Results Compared with the hypoxia parameters in NREM stage,e-minSpO2 and r.DSpO2 were lower,and ΔSpO2,d.DSpO2,ODR,ORR,T90,d.T90,r.T90,and ST90,d.ST90,r.ST90 were higher in REM stage(P<0.05). The accuracy of ANN model test sets in predicting REM sleep was 84.00%,with the area under the curve(AUC)of 0.73,and the sensitivity,specificity,positive predictive value,and negative predictive value were 0.11,0.99,0.65 and 0.85,respectively. Conclusion There are differences in REM and NREM sleep hypoxia parameters in OSA patients,based on which an ANN prediction model can be constructed to achieve convenient,accurate and rapid identification ofsleep staging,which can provide a reference for the diagnosis and treatment of clinical sleep-related diseases.
文章编号:     中图分类号:R766    文献标志码:A
基金项目:
附件
引用文本:
杨梦蝶, 彭程, 崔祎冉, 许绍蓉, 王彦.基于低氧参数构建阻塞性睡眠呼吸暂停患者睡眠分期预测模型[J].中国临床研究,2025,38(6):901-905.

用微信扫一扫

用微信扫一扫