本文已被:浏览 60次 下载 41次
投稿时间:2024-12-18 网络发布日期:2025-05-20
投稿时间:2024-12-18 网络发布日期:2025-05-20
中文摘要: 肺癌是全球常见的恶性肿瘤之一。肺结节作为早期肺癌的主要表现形式,其早期检出和诊断对于降低死亡率具有重要意义。近年来,基于CT的人工智能(AI)技术在医学影像分析领域取得了显著进展。本文综述了深度学习和影像组学技术在肺结节分割与检测、良恶性分类及预后预测中的应用,并介绍了最新的技术前沿,旨在为临床实践提供新的视角和方法。
Abstract:Lung cancer is one of the common malignancies worldwide. Lung nodules, defined as early stage manifestations, are critical for early detection and diagnosis to reduce mortality. In recent years, CT based artificial intelligence (AI) technology has made significant progress in medical image analysis. This review summarizes the applications of deep learning and radiomics in the segmentation and detection of lung nodules, differentiation between benign and malignant nodules, and prediction of lung cancer prognosis. It also presents the latest technical frontiers with the aim of providing new perspectives and methods for clinical practice.
keywords: Lung nodules Artificial intelligence Deep learning Radiomics Computer-aided diagnosis Residual network
文章编号: 中图分类号:R445.3 TP18 文献标志码:A
基金项目:南京医科大学科技发展基金一般项目(NMUB20230037)
附件
Author Name | Affiliation |
WANG Hao, BAI Zhuojie | Department of Radiology, the Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210031, China |
引用文本:
王皓,白卓杰.基于CT的人工智能技术在肺结节诊断中的应用进展[J].中国临床研究,2025,38(5):667-671,676.
王皓,白卓杰.基于CT的人工智能技术在肺结节诊断中的应用进展[J].中国临床研究,2025,38(5):667-671,676.