本文已被:浏览 268次 下载 283次
投稿时间:2023-07-11 网络发布日期:2024-03-20
投稿时间:2023-07-11 网络发布日期:2024-03-20
中文摘要: 目的 建立基于最小绝对收缩与选择算子算法(LASSO)回归的活动性肺结核(ATB)早期诊断列线图预测模型并进行验证。方法 以2021年3月至2023年3月昆明市第三人民医院收治的403例ATB患者为观察组。以同期健康体检者175例为对照组。收集患者的一般资料、实验室检查结果,基于R软件使用LASSO回归筛选变量,并进行多因素logistic回归,根据多因素分析结果建立ATB列线图模型,使用受试者工作曲线(ROC)、校准曲线进行内部验证,并使用临床决策曲线进行临床效用分析。结果 LASSO回归共筛选出19个潜在的危险因子,分别为C反应蛋白(CRP)、触珠蛋白(HAP)、免疫球蛋白G(IgG)、CD4+淋巴细胞绝对数(CD4+)、CD4+淋巴细胞与CD8+淋巴细胞的比值(CD4+/CD8+)、白细胞介素(IL)-1β、IL-6、IL-8、IL-10、IL-17、淋巴细胞百分数(LYM%)、单核细胞百分数(MON%)、嗜酸性粒细胞百分数(EOS%)、红细胞平均血红蛋白浓度(MCHC)、平均红细胞体积(MCV)、血小板计数(PLT)、红细胞分布宽度标准差(RDW-SD)、中性粒细胞计数与淋巴细胞计数比值(NLR)、大型血小板比率(PLCR)。多因素分析结果显示:CRP(OR=1.352,95%CI:1.134~1.612)、IL-6(OR=1.165,95%CI:1.032~1.315)、IL-8(OR=1.105,95%CI:1.019~1.198)、IL-10(OR=1.544,95%CI:1.066~2.235)、EOS%(OR=1.386,95%CI:1.105~1.737)、MCV(OR=1.154,95%CI:1.051~1.737)、PLT(OR=1.025,95%CI:1.013~1.037)、MCHC(OR=0.899,95%CI:0.854~0.946)为ATB的独立危险因子(P<0.05)。根据列线图绘制曲线ROC,结果显示,列线图模型预测ATB的AUC为0.982(95%CI:0.973~0.991);校准曲线结果显示:该列线图模型预测ATB风险概率与实际概率基本吻合;决策曲线分析结果显示:当列线图模型预测ATB风险的概率阈值为0.05以上时,患者的净收益值大于0。结论 随着CRP、IL-6、IL-8、IL-10、EOS%、MCV、PLT水平升高和MCHC水平降低,发生ATB的风险随之升高。根据上述因素建立的列线图预测模型可用于ATB的早期诊断。
Abstract:Objective To develop and validate a nomogram prediction model for the early diagnosis of active pulmonary tuberculosis (ATB) based on LASSO regression. Methods A total of 403 patients with ATB admitted to the Third People's Hospital of Kunming between March 2021 and March 2023 were used as the experimental group, and 175 cases of healthy physical examiners during the same period were selected as the control group. General information and laboratory test results of patients were collected, variables were screened using LASSO regression based on R software, and multivariable logistic regression was performed. A nomogram model of ATB was established based on the results of multivariable analysis, and internal validation was performed using receiver operating curve (ROC) and calibration curves, while clinical utility analysis using clinical decision curves. Results A total of 19 potential risk factors were screened by LASSO regression, namely C-reactive protein (CRP), haptoglobin (HAP), immunoglobulin G (IgG), absolute number of CD4+ lymphocytes (CD4+), ratio of CD4+ lymphocytes to CD8+ lymphocytes (CD4+/CD8+), interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-17, lymphocyte percentage (LYM%), monocyte percentage (MON%), eosinophil percentage (EOS%), mean corpuscular hemoglobin concentration (MCHC), mean red blood cell volume (MCV), platelet count (PLT), red blood cell distribution width-standard deviation (RDW-SD), neutrophil to lymphocyte ratio (NLR) and platelet large cell ratio (PLCR). Multirariable analysis showed that CRP (OR=1.352, 95%CI: 1.134-1.612), IL-6 (OR=1.165, 95%CI: 1.032-1.315),IL-8 (OR=1.105, 95%CI: 1.019-1.198), IL-10 (OR=1.544, 95%CI: 1.066-2.235), EOS% (OR=1.386, 95%CI: 1.105-1.737), MCV (OR=1.154, 95%CI: 1.051-1.737), PLT (OR=1.025, 95%CI: 1.013-1.037), and MCHC (OR=0.899, 95%CI: 0.854-0.946) were the independent risk factors for ATB. According to the nomogram, the ROC was plotted and showed that AUC of ATB risk predicted by model was 0.982 (95%CI: 0.973-0.991), the calibration curve results showed that the predicting probability of ATB risk by the nomogram model was basically consistent with the actual probability, and the results of decision curve analysis showed that when the probability threshold of the nomogram model predicting the risk of ATB was more than 0.05, the net benefit value of the patients was greater than 0. Conclusion The risk of ATB increases with increasing levels of CRP, IL-6, IL-8, IL-10, EOS%, MCV, PLT and decreasing levels of MCHC. The nomogram prediction model based on the above factors can be used for the early diagnosis of ATB.
keywords: Active tuberculosis Early diagnosis Nomogram Statistical models Mean red blood cell volume Platelet count Interleukin C-reactive protein Mean corpuscular hemoglobin concentration
文章编号: 中图分类号:R521 文献标志码:A
基金项目:云南省教育厅科研基金项目(2024J0879);昆明市卫生科研课题项目(2021-03-08-006);昆明市卫生科技人才培养十百千工程(2021-SW-13)
附件
引用文本:
樊浩,武彦,刘幸,等.基于LASSO回归的活动性肺结核列线图预测模型的构建及验证[J].中国临床研究,2024,37(3):424-429.
樊浩,武彦,刘幸,等.基于LASSO回归的活动性肺结核列线图预测模型的构建及验证[J].中国临床研究,2024,37(3):424-429.