###
中国临床研究:2023,36(1):34-39
本文二维码信息
码上扫一扫!
基于T2WI及动态对比增强MRI的影像组学模型预测肾细胞癌亚型
(安徽医科大学第三附属医院医学影像科,安徽合肥230000)
Prediction of renal cell carcinoma subtype by T2WI and dynamic contrast-enhanced MRI-based radiomics model
(DepartmentofRadiology,TheThirdAffiliatedHospitalofAnhuiMedicalUniversity,Hefei,Anhui230000,China)
摘要
本文已被:浏览 1559次   下载 493
投稿时间:2022-04-29   网络发布日期:2023-01-20
中文摘要: 目的 探讨从T2WI及动态增强磁共振图像中获得的影像组学特征在区分肾细胞癌(RCC)三种亚型中的价值。 方法回顾性收集安徽医科大学第三附属医院2014年3月至2020年4月经术后病理证实的84例RCC且接受术前磁共振成像(MRI)检查患者的临床影像资料,84例中,透明细胞肾细胞癌(ccRCC)46例、乳头状肾细胞癌(pRCC)20例和嫌色细胞肾细胞癌(cRCC)18例。利用3D-Slicer软件在三个序列(T2WI、EN-T1WI皮质期和EN-T1WI髓质期)上对肿瘤三维全层勾画感兴趣区(ROI),利用Python软件从肿瘤体积中提取影像组学特征。使用组内组间相关分析计算每个特征组内组间相关系数(ICC),选取ICC>0.75的特征作为可重复提取的稳定特征。将肿块随机分为训练集和验证集(约6∶4),使用Kruskal-wallis检验筛选出每个MRI序列鉴别RCC亚型的最佳纹理特征,使用Countif函数对特征子集进行筛选,取三个序列的最佳特征,利用所筛选的基于影像组学的最佳特征分别建立T2WI、EN-T1WI皮质期和EN-T1WI髓质期三个序列的logistic回归模型。报告测试集三种亚型在三个序列的曲线下面积(AUC)、敏感度和特异度。 结果三种亚型在三个序列有显著差异的影像组学特征共16个,T2WI、EN-T1WI皮质期、EN-T1WI髓质期序列在区分ccRCC和pRCC时的AUC分别为0.833、0.895和0.885;区分ccRCC和cRCC时的AUC分别为0.822、0.856和0.766;区分pRCC和cRCC时的AUC分别为0.857、0.881和0.857。 结论基于MRI中所获得的影像组学资料,T2WI、EN-T1WI皮质期和EN-T1WI髓质期影像组学模型都可以很好的区分ccRCC、pRCC和cRCC,且以EN-T1WI皮质期诊断效能最佳。
Abstract:ObjectiveToinvestigatethevalueofradiomicsfeaturesobtainedfromT2-weightedimaging(T2WI)anddynamiccontrast-enhancedmagneticresonanceimaging(DCE-MRI)indifferentiatingtherenalcellcarcinoma(RCC)subtypes. MethodsTheclinicalandimagingdatawereretrospectivelycollectedfrom84RCCpatientsconfirmedbypostoperativepathologyandpreoperativeMRIfromMarch2014toApril2020intheThirdAffiliatedHospitalofAnhuiMedicalUniversity.Therewere46casesofclearcellrenalcellcarcinoma(ccRCC),20casesofpapillaryrenalcellcarcinoma(pRCC)and18casesofchromophoberenalcellcarcinoma(cRCC).Thethree-dimensionalfull-layerregionofinterest(ROI)ofwholetumorwasdelineatedonthreesequences(T2WI,EN-T1WIincorticalphaseandEN-T1WIinmedullaryphase)using3DSlicersoftware,andtheradiomicsfeatureswereextractedfromthetumorvolumeusingPythonsoftware.Thecorrelationanalysiswasusedtocalculateintra-groupandinter-groupcorrelationcoefficient(ICC)foreachfeaturegroup,andfeatureswithICCvaluesgreaterthan0.75wereconsideredreproducibleandstablefeaturesthatcouldbeextractedrepeatedly.Thelesionswererandomlydividedintotrainingsetandtestsetaccordingtotheproportionof6∶4,andthebesttexturefeaturesforeachMRIsequencetoidentifyRCCsubtypeswerescreenedusingKruskal-wallistest.CountiffunctionwasusedtoscreenfeaturesubsetsforthebestfeaturesselectionofthreesequencestoestablishthelogisticregressionmodelsofT2WIandEN-T1WIcorticalphaseandEN-T1WImedullaryphase.TheAUC,sensitivityandspecificityofthethreesubtypesofthetestsetinthreesequenceswerecalculatedandreported. ResultsTherewere16radiomicsfeaturesofthethreesubtypeswithsignificantdifferencesinthethreesequences.AUCsofT2WIandEN-T1WIcorticalphaseandEN-T1WImedullaryphasesequencewere0.833,0.895and0.885indistinguishingccRCCandpRCC,0.822,0.856and0.766forccRCCandcRCC,and0.857,0.881and0.857forpRCCandcRCC. ConclusionBasedonradiomicsfeaturesobtainedfromMRI,T2WIandEN-T1WIcorticalphaseandEN-T1WImedullaryphaseradiomicsmodelscanwelldistinguishccRCC,pRCCandcRCC,andEN-T1WIcorticalphasehasthebestdiagnosticperformance.
文章编号:     中图分类号:R737.11 R445.2    文献标志码:A
基金项目:合肥市科技局科研合作项目(YW201608080003)
附件
引用文本:
李增华,夏春华,胡大涛,黄丹丹,冯倩茹,王亚奇.基于T2WI及动态对比增强MRI的影像组学模型预测肾细胞癌亚型[J].中国临床研究,2023,36(1):34-39.

用微信扫一扫

用微信扫一扫