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Abstract: Sepsis is the main cause of death in critically ill patients in clinic, with high incidence and complicated pathogenesis.
Coagulation system is an important factor of the pathogenesis and lethal mechanism of sepsis, especially sepsis complicated
with disseminated intravascular coagulation (DIC), which is the dual effect of coagulation cascade reaction and inflammatory
immune response. This paper describes the molecular mechanism of DIC in sepsis and the latest treatment research progress,

in order to provide new ideas and methods for clinical work.
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1 Introduction

In 2016, the definition of sepsis was updated to
describe it as a life-threatening organ dysfunction caused
by an excessive host response to infection. During the
development of sepsis, the inflammatory immune response
triggered by infection can lead to multiple organ
dysfunction and disturbances in various systems, including
the coagulation system. Coagulation system dysfunction is
a critical factor influencing the mortality rate in sepsis.
After the immune system is stimulated by cytokines during
sepsis, the coagulation cascade is inevitably activated to
respond to the damage caused to the body by sepsis [1].
Regarding the coagulation cascade, the inherent ability of
platelets to be activated and aggregated provides a perfect
stage for the initiation of the coagulation cascade.

Studies have showed that the mortality rate in sepsis
patients with disseminated intravascular coagulation (DIC)
is significantly higher than in those without DIC.
Furthermore, correction of coagulation dysfunction can
notably improve the prognosis of sepsis patients [2]. The
core molecular mechanism of DIC is the dual effect of the
coagulation cascade and the inflammatory immune
response. However, the exact mechanism of the
coagulation cascade triggered by DIC in sepsis remains
unclear. This paper aims to elucidate the latest research
progress on the pathogenesis and treatment of DIC in
sepsis, hoping to provide references for future studies.

2 Molecular Mechanism of DIC in Sepsis

2.1 Initiation of the Coagulation System in Sepsis:

The Tissue Factor Pathway

Tissue factor is a membrane glycoprotein receptor
that forms a high-affinity complex with coagulation factors
VII/VIla, activating factors IX to IXa and X to Xa through
proteolysis, leading to thrombin generation and fibrin
formation, and platelet activation. According to current
research and perspectives, tissue factor is a central element
in the initiation of DIC.

Firstly, when inflammation and immune responses
cause endothelial cell damage, the membrane-bound
proteoglycans and side chains in endothelial cells are
exposed, leading to the loss of their antithrombotic
properties. This results in the release of platelet recruitment
and thrombus formation signals into the coagulation
system, namely, tissue factor. Secondly, tissue factor is also
present in inflammatory cells, mainly monocytes and
macrophages. Upon infection, these cells recognize
pathogen-associated molecular patterns (PAMPs) and
damage-associated molecular patterns (DAMPs) through
pattern recognition receptors (PRRs) such as Toll-like
receptors (TLRs), Fcy receptors, and G-protein-coupled
receptors [3-4]. Upon recognition of PAMPs and DAMPs
by PRRs on the surfaces of monocytes and macrophages,
these cells are activated to release inflammatory cytokines
and chemokines, which in turn activate neutrophils,
platelets, and endothelial cells. Activated monocytes can
also release extracellular vesicles that express tissue factor
and phosphatidylserine on their surfaces. Therefore, tissue
factor and phosphatidylserine are released into circulation,
activating both exogenous and endogenous coagulation
pathways. Neutrophils play an important role in the
activation of the coagulation cascade through the
expression of tissue factor and the release of chemical
mediators and proteins. Thus, the expression and release of
tissue factor in endothelial cells and inflammatory cells is
the key to initiating the coagulation cascade.
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2.2 The Pro-coagulant Effect of the Inflammatory

Response on the Coagulation System in Sepsis

After the release of tissue factor, neutrophils and
platelets jointly mediate the next step in the immune
response. First, it is important to recognize the existence of
"nets" formed by neutrophils in the vasculature, called
neutrophil extracellular traps (NETs), which are a
bactericidal mechanism used by neutrophils in response to
infection. NETs are DNA fibers composed of histones and
antimicrobial proteins. Infecting microorganisms, such as
bacteria, are trapped within these nets and are killed by
locally concentrated and lethal effector proteins [5].
Studies have shown that NETs can influence
microorganisms and inflammatory stimuli in vitro [6-7].
This is one of the mechanisms of the inflammatory
immune response for pathogen elimination. However, at
the same time, NETs provide a scaffold for platelet binding
and aggregation, directing the development of coagulation
reactions [8]. NETs induce the formation of thrombi rich
in red blood cells, and these thrombi also interact with
plasma proteins critical to thrombus stability [9].

As previously mentioned, after monocytes and
macrophages release inflammatory cytokines and
chemokines, upregulating  tissue factor  and
phosphatidylserine expression [10], they also activate
neutrophils to release NETs. Additionally, they induce cell
apoptosis to further limit and kill pathogens. Fuchs et al.
confirmed in their experimental model that under the
influence of NETs, DNA and histones released from
apoptotic immune cells can attract platelet aggregation and
thrombus formation [11]. The apoptosis induced by NETs
can generate damage-associated molecular patterns, which
in turn enhance the inflammatory immune response and
coagulation cascade, creating a localized positive feedback
loop.

2.3 The Promoting Role of Platelets in Inflammatory

Response in Sepsis

Platelet activation is characteristically increased in
sepsis patients. Studies have shown that pathogen-induced
activation of the endothelium and leukocytes, complement
activation triggered by inflammation, and other
inflammatory processes are significant factors in
mediating platelet activation [12-13]. In this regard,
platelet activation is an unavoidable factor to focus on in
sepsis, as platelets not only possess coagulation properties
but also play a role in promoting the inflammatory immune
response.

Activated platelets mediate pathogen recognition and
immune complex formation through the expression of
various receptors such as TLRs, Fc receptors, and CD40
ligand (CD40L) [ 14-16]. Studies have shown that activated
platelets interact directly with leukocytes or endothelial
cells through surface expression of CD62P, promoting the
formation of platelet-neutrophil aggregates in the

circulation of septic mice, which assists in neutrophil
infiltration in the lungs, thereby limiting bacterial spread
[17-18]. However, this can also lead to conditions such as
septic pneumonia or cecal perforation [19]. Additionally,
activated platelets release chemokines like CCL5 (C-C
motif ligand 5) and platelet factor 4 (PF4), which stimulate
macrophages to produce chemokines such as macrophage
inhibitory protein-2 (MIP-2) and KC (CXCLI;
homologous to human IL-8/CXCLS), thus promoting
neutrophil recruitment, but also facilitating edema
formation [20-22]. The serotonin released from dense
granules during platelet activation promotes the adhesion
and extravasation of neutrophils in sepsis [23]. Moreover,
the high-mobility group box protein 1 (HMGB1) secreted
by platelets not only activates platelets but has also been
associated with leukocyte recruitment and bacterial
clearance in experimental mouse models [24].

In summary, various receptors and secreted factors
such as TLRs, Fc receptors, CD40L, CD62P, CCL5, PF4,
MIP-2, serotonin, and HMGBI1 can collectively aid in the
aggregation of neutrophils and other inflammatory cells,
thereby promoting the inflammatory immune response.
Platelet activation induced by pathogens and inflammatory
mediators promotes thrombosis formation while
enhancing immune responses, making platelets' role in
sepsis particularly significant.

2.4 The Development of DIC in Sepsis

In sepsis, the continuous interplay between
inflammatory immune responses and coagulation cascades
gradually leads to the development of DIC, accompanied
by a disruption of the fibrinolytic system. Under normal
conditions, the fibrinolytic system is balanced between
tissue plasminogen activator (t-PA) and plasminogen
activator inhibitor-1 (PAI-1). t-PA promotes fibrinolysis,
while PAI-1 inhibits it. In the early stages of sepsis,
following thrombus formation in blood vessels, the effect
of t-PA is enhanced, thereby promoting fibrinolysis and
ensuring timely removal of the thrombus to prevent vessel
blockage. As sepsis progresses and severe inflammation
takes hold, the body shifts its focus to controlling and
eliminating the infection, leading to an increase in PAI-1
activity, enhanced fibrinolysis inhibition, and a
hypercoagulable state in the vascular system. Fibrin
networks form to limit the spread of pathogens such as
bacteria, preventing their dissemination to other organs
and tissues, which could lead to more severe infections.
The inhibition of fibrinolysis causes a hypercoagulable
state, depleting coagulation factors throughout the body,
and the balance of fibrinolysis is completely disrupted [25].

In addition, the interaction between protease-
activated receptor-1 (PAR-1) and thrombin upregulates
both inflammatory and coagulation responses. Endothelial
cells lose their anticoagulant glycocalyx, releasing
thrombomodulin, von Willebrand factor (VWF), and
adhesion molecules. Anticoagulants like antithrombin and
protein C also leak out due to increased vascular
permeability mediated by inflammation, making it difficult
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to regulate coagulation in the vessels. A combination of
factors leads to the massive formation of microvascular
thrombi, causing the onset of DIC [26].

3 Latest Treatments for Sepsis

3.1 Heparin

Heparin is commonly used in sepsis patients.
Analytical reports indicate that heparin can improve the
prognosis of sepsis, particularly in reducing the mortality
of severely ill patients [27]. Clinically, heparin can also be
used as a control measure in patients with sepsis
complicated by disseminated intravascular coagulation
(DIC). Additionally, recent clinical reviews have found
that low molecular weight heparin (LMWH) shows
potential life-saving effects, reducing inflammation and
coagulation disorders in sepsis patients. It is especially
beneficial in patients under 60 years of age, those
diagnosed with sepsis-induced coagulopathy (SIC), ISTH-
defined DIC, non-infectious shock, or non-diabetic
patients, and those in moderate-risk groups (APACHE II
score 20-35 or SOFA score 8-12) [28]. Thus, its use can be
further explored in clinical treatment. However, LMWH is
preferred over standard heparin due to its superior

treatment outcomes and prognosis in current evidence [29].

3.2 Antithrombin

Antithrombin is a serine protease inhibitor (SPI) that
inactivates factors VIla, IXa, Xa, and Ila. It is one of the
most abundant physiological anticoagulants in plasma. In
addition to its anticoagulant properties, antithrombin also
exhibits anti-inflammatory effects by stimulating the
production of prostacyclin in endothelial cells, thereby
inhibiting the production of cytokines and tissue factors in
endothelial and monocyte cells [30].

Antithrombin is highly suitable for treating sepsis
patients with DIC. Several randomized controlled trials
have compared the effects of antithrombin on the
prognosis of sepsis-related DIC [31]. It is clear that
antithrombin significantly improves mortality rates in such
patients. However, sepsis patients with DIC should not be
treated in the same way as those without DIC. A study by
Kienast et al. [32] on 563 septic patients with DIC but no
heparin treatment showed a 14.6% reduction in 28-day
mortality in the antithrombin group, while no such effect
was seen in non-DIC sepsis patients. Nevertheless, as
current studies do not provide a uniform standard for
antithrombin dosages, longitudinal comparative research is
needed to better determine the benefit of antithrombin
treatment in different dosages.

At present, the timing and dosage of antithrombin use
remain areas that require further investigation. Recent
studies have explored the potential beneficial effects of
combining antithrombin with recombinant
thrombomodulin (rTM), particularly in severe cases [33].
The efficacy of this combination therapy should be further

tested in future trials.
3.3rTM

rTM binds to thrombin, promoting protein C
activation and inhibiting thrombin formation, thus
exhibiting anticoagulant effects [33]. Additionally, its
lectin-like domain provides anti-inflammatory and cell-
protective activities [34-35]. Related research has shown
that rTM is effective in treating DIC and alleviate the
condition [36].

Several randomized controlled trials have indicated
that rTM improves the prognosis of sepsis, particularly
reducing mortality rates. One study found that rTM
reduced the 28-day mortality of sepsis and suspected DIC
patients from 21.6% to 17.8% [37]. However, subsequent
studies showed no significant difference in outcomes when
patients had at least one organ dysfunction, prolonged
INR>1.4, and decreased platelet counts [38]. Still, most
randomized controlled trials support the use of rTM to
significantly reduce mortality in sepsis-related DIC
patients [39]. Thus Therefore, the Japanese sepsis
guidelines recommend rTM for sepsis-related DIC [40].

3.4 Activated Protein C

Protein C is a natural anticoagulant that exhibits
anticoagulant properties by inactivating factor Va and
factor VIIla. Recombinant human activated protein C
(thAPC) was once considered a specific anticoagulant in
the treatment of sepsis. However, in multiple randomized
controlled trials, we were unable to conclusively
demonstrate its significant impact on reducing mortality
rates [41-43]. Although one randomized controlled trial
indicated that the reduction of rhAPC was a significant
marker for poor prognosis [44], there is no compelling
evidence or clear mechanism to support this. Therefore, the
use of rhAPC for the treatment of sepsis-related DIC
remains highly controversial. We hope that newly
developed rhAPC will prove to be more effective.

3.5 Berberine

Studies have found that berberine can block Msrl to
inhibit bacterial sepsis-induced caspase-11-dependent
coagulation, thereby preventing coagulopathy [45].
Berberine and its main metabolite M2 inhibit platelet
activation by suppressing Class I PI3Kf and Rasa3
membrane translocation, then inhibiting Rap1 activation.
Moreover, berberine can effectively convert antiplatelet
activity into antithrombotic activity in vivo without
increasing the risk of bleeding [46].

3.6 Interferon-p

Interferon-f has antiviral activity. Research shows
that interferon-f combined with nicotinamide riboside (NR)
alleviates sepsis during bacterial septicemia by enhancing
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endothelial SIRT1. Interferon-f combined with nitrate
reductase protects endothelial integrity via SIRTI.
Additionally, interferon-f combined with nitrate reductase
repairs CLP-induced endothelial glycocalyx damage
through the SIRT1/heparanase-1 pathway [47]. As
discussed earlier in the mechanisms of sepsis-induced DIC,
endothelial cell damage and glycocalyx disruption are key
steps in triggering DIC and releasing tissue factor.
Therefore, IFN-B’s protective and reparative effects on
endothelial cells theoretically make it an effective
treatment to block DIC. However, the actual clinical
efficacy still requires further research and trials to verify.

3.7 Ketoconazole

Ketoconazole is used as an anticoagulant in clinical
treatment of vascular diseases. A study in Egypt showed
that ketoconazole had a protective effect against
microcirculatory dysfunction induced by neonatal sepsis.
It significantly reduced the incidence of DIC and multiple
organ dysfunction, resulting in better prognosis [48].

4 Conclusion

At present, although the mechanisms of sepsis-
induced DIC are still not fully clear, our understanding of
sepsis-related DIC has advanced significantly. Preventive
measures for DIC caused by coagulopathy in sepsis, which
ultimately leads to death, have also progressed. Treatment
options and medications for sepsis-related DIC are
continually evolving. However, there remains much room
for improvement, particularly in determining the optimal
timing for anticoagulation, the dosing of anticoagulants,
and the monitoring of anticoagulation markers. It is hoped
that future research will lead to more definitive and
effective treatments to save more sepsis patients.
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