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Abstract: Sepsis is a life-threatening organ dysfunction caused by a series of uncontrolled reactions of the host to infection,
trauma, and other factors. In recent years, research has found that various pathological and physiological changes such as
inflammation, immune dysfunction, cell apoptosis, autophagy, and coagulation dysfunction are involved in the occurrence and
development of sepsis. The proteins encoded by T cell immunoglobulin mucin (TIM) may be potential targets for early
diagnosis, immunotherapy, and prognostic evaluation of sepsis. This article provides an overview of the pathogenesis of sepsis
and its association with the mucin gene family, in order to provide new ideas for the diagnosis and treatment of sepsis.
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Sepsis is a complex inflammatory imbalance
response of the body to infection, trauma, and other
factors, leading to life-threatening organ dysfunction [1].
Some cases progress to septic shock, with high incidence
and mortality rates and poor prognosis. According to a
systematic epidemiological survey, 33.6% of ICU patients
in mainland China were diagnosed with sepsis, and the
overall mortality rate of sepsis (28-30 days or during
hospitalization) was 29.0% (95% CI: 25.3%-32.8%), with
the overall mortality rates of septic shock and severe
sepsis (28-30 days or during hospitalization) being 37.3%
(95%CI: 28.6% - 46.0%) and 31.1% (95%CI: 25.3% -
36.9%), respectively [2]. Therefore, early diagnosis and
treatment of sepsis are crucial for patient prognosis.
Research in recent years has found that members of the T
cell immunoglobulin and mucin domain (7IM) gene
family may be involved in the inflammatory response and
immune regulation process of sepsis [3-5]. This article
reviews the pathogenesis of sepsis and its association
with the TIM gene family, in order to provide new ideas
for the research on the diagnosis and treatment of sepsis.

1 Sepsis

Sepsis is one of the most common critical diseases
encountered in clinical practice and represents a major
challenge in modern medicine. Currently, antibiotics,
fluid resuscitation, and organ system support are still the
primary therapeutic strategies for sepsis. The
pathogenesis of sepsis is complex, and to better explore
new approaches for its diagnosis and treatment, it is
essential to conduct in-depth studies on its mechanisms.
Recent studies have focused on pathological processes
such as inflammation imbalance, immune dysfunction,
autophagy, genetic polymorphisms, and coagulation
abnormalities [6-7], which provide a theoretical basis for

the clinical prevention and treatment of sepsis.

1.1 Disruption of the pro-inflammatory and
anti-inflammatory balance

Sepsis initially manifests as a hyper-inflammatory
phase, followed by an anti-inflammatory or
immunosuppressive phase. The imbalance between
pro-inflammatory and anti-inflammatory responses plays
a crucial role in the pathogenesis and progression of
sepsis [8]. In the early stages of sepsis, infection triggers
the release of numerous pro-inflammatory cytokines,
primarily tumor necrosis factor (TNF)-a, interferon
(IFN)-y, interleukin (IL)-1, and IL-6. Although the
formation of these cytokines helps the host eliminate
pathogenic  microorganisms, the pro-inflammatory
response can lead to a cytokine storm, resulting in the
excessive release of pro-inflammatory factors, which
causes fever, increased vascular permeability, and tissue
damage. This is a major reason for the high early
mortality in sepsis patients.

In the later stages of sepsis, laboratory tests show
that, while pro-inflammatory mediators such as
C-reactive protein (CRP) and IL-1f continue to be
expressed, various endogenous anti-inflammatory
responses are activated, generating anti-inflammatory
cytokines such as transforming growth factor-p (TGF-),
IL-4, IL-10, and IL-13. These anti-inflammatory
cytokines aim to reduce excessive inflammatory
responses and protect normal cells from inflammatory
damage. These anti-inflammatory cytokines work to
mitigate excessive inflammation and protect healthy cells
from inflammatory damage. However, this ultimately
leads to the depletion of pro-inflammatory mediators and
an increase in the proportion of anti-inflammatory
mediators, causing an imbalance between
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pro-inflammatory and anti-inflammatory responses. At
this stage, the host enters an immunosuppressive state
with reduced resistance to external pathogens, increasing
susceptibility to opportunistic infections, and ultimately
leading to multiple organ dysfunction syndrome [7].

1.2 Immune dysfunction

Various types of immune cells, including neutrophils,
macrophages, B cells, and T cells, collaborate in the
development and progression of sepsis [8]. Studies have
shown that these immune cells can be activated through
different signaling pathways in septic mice, playing a
crucial role in both innate and adaptive immunity during
sepsis [9]. Innate immunity involves monocytes,
macrophages, dendritic cells, granulocytes, and natural
killer cells. In the early stages of sepsis, innate immunity
begins to function. When an infection occurs, a large
number of mature neutrophils are recruited to the site of
infection to provide ecarly defense. However, as sepsis
progresses, neutrophil migration capacity decreases, and
apoptosis increases, leading to a decline in the
functionality of the innate immune system [10].
Macrophage activation is essential in the development of
septic shock. Endotoxins (LPS) from Gram-negative
bacterial infections can activate macrophages, triggering
the release of pro-inflammatory cytokines such as TNF-o,
IL-1, and IL-6, thereby causing systemic inflammation.
Macrophages exist in two activation states, M1 and M2.
The M1 phenotype primarily exerts pro-inflammatory
effects, whereas M2 exerts anti-inflammatory effects. In
the early stages of sepsis, M1 is activated and plays a key
role. However, in the later stages of sepsis, M1 apoptosis
increases, and M2 polarization rises, contributing to the
immune suppression seen in late-stage sepsis and
subsequent secondary infections [9,11]. In sepsis,
dendritic cell maturation and activation are suppressed,
which impairs the process of antigen presentation and the
promotion  of  inflammatory = responses.  This
immunosuppressive effect of dendritic cell dysfunction is
particularly evident in the later stages of sepsis [12].

T lymphocytes and B lymphocytes are crucial for
acquired immunity. CD4" T cells assist CD8" T cells in
cellular immunity and also support B cells in humoral
immunity. Upon activation, CD4" T cells differentiate
into different subgroups, such as Thl, Th2, Th17, and
Treg cells. The Th2 subgroup mainly secretes
anti-inflammatory ~ cytokines, = while = Thl  cells
predominantly produce pro-inflammatory cytokines [13].
The Th1/Th2 imbalance has been closely associated with
sepsis progression [14]. Late-stage sepsis is more likely
to be dominated by a Th2-driven immunosuppressive
phase [15]. Persistent immunosuppression is a major
cause of sepsis-related mortality [16]. Thl7 cells
represent a pro-inflammatory subset, while Treg cells
promote anti-inflammatory actions. Studies have shown
that Tregs can inhibit immune responses of other T cell
subsets. During sepsis, the proportion of helper T
lymphocyte subsets becomes imbalanced, and Treg
differentiation increases, leading to a Thl7/Treg

imbalance. This imbalance plays a significant role in
inflammatory diseases such as sepsis and rheumatoid
arthritis [17], and it is a key mechanism that promotes
immune paralysis during the later stages of sepsis. When
pathogens invade the body, B lymphocytes produce a
variety of antibodies involved in humoral immunity. The
interaction between antibodies and antigens can block the
interaction of viruses or microbial toxins with host cells,
thereby inactivating them. It can also tag the invading
pathogens for destruction by phagocytic cells. However,
in septic patients, B cells are reduced, and the surviving B
cells are mainly of a subtype with low antigen-presenting
capacity, as well as poor activity and proliferative ability.
Furthermore, the occurrence of septic shock is also
associated with regulatory B cells, which exert immune -
suppressive effects through multiple pathways [9].

1.3 Macrophage autophagy

Macrophage autophagy is closely related to
inflammation and immunity. In sepsis, enhanced
autophagy can exert protective effects by negatively
regulating abnormal macrophage activation, modulating
macrophage polarization phenotype, reducing
inflammasome activation and inflammatory factor release,
and influencing macrophage apoptosis. However,
excessive autophagy may lead to autophagic cell death,
further exacerbating the inflammatory response [18].

The changes in various inflammation and immune
responses are closely associated with the development of
sepsis. It is now known that the TIM gene family may be
closely related to the occurrence and development of
sepsis and is an important regulator of immune responses.

2 TIM gene family

Currently, eight TIM genes (TIM-1 to TIM-8) have
been discovered on mouse chromosome 11B1.1, and
three TIM genes (TIM-1, TIM-3, and TIM-4) have been
identified on human chromosome 5q33.2 [19]. The mouse
TIM-1, TIM-3, and TIM-4 genes are homologous to their
human counterparts and encode similar type I
transmembrane proteins (7IM-1, TIM-3, and TIM-4).
Increasing evidence suggests that TIM proteins are
expressed on various immune cells and play diverse roles
[20]. Studies have shown that TIM-1, TIM-3, and TIM-4
are pattern recognition receptors that specifically
recognize phosphatidylserine exposed on the surface of
apoptotic cells [21]. phosphatidylserine is typically
located on the inner leaflet of the plasma membrane, but
during apoptosis, it is redistributed and exposed on the
outer membrane. The recognition of apoptotic cells is a
critical part of maintaining tissue homeostasis and
immune regulation, and the phosphatidylserine on
apoptotic cells serves as a key signal to trigger
phagocytosis. TIM-1, TIM-3, and TIM-4 can all recognize
phosphatidylserine [22-23]. However, their molecular
structures and expressions differ, indicating that these
three proteins have distinct effects in regulating immune
responses.
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2.1 TIM-1

A clinical study showed that plasma TIM-1 levels
are elevated in septic patients compared to non-septic
patients, with higher levels in patients with septic shock.
Furthermore, septic patients with higher plasma TIM-1
levels had a lower survival rate [3]. This suggests that
TIM-1 may participate in the inflammatory development
and immune regulation process in sepsis, and may have
certain research value in sepsis diagnosis and prognosis
evaluation.

Recent studies have found that TIM-1 is expressed
on the surface of various immune cells, including
activated T cells (primarily Th2 cells), mast cells, natural
killer cells, dendritic cells, and B cells [24]. TIM-1
widely regulates both innate and adaptive immune
systems [25]. TIM-1 is a co-stimulatory factor for T cell
activation. After the activation of CD4" T cells, TIM-1 is
expressed on Th2 cells and promotes Th2 immunity by
enhancing the production of Th2 cytokine IL-4. It is not
expressed on Thl cells. TIM-1 can also shift the balance
between Thl and Th2 immunity towards a Th2 response
by interacting with its ligands, promoting Th2 immunity
[26]. This regulatory effect of TIM-1 on Th1/Th2 balance
may be the mechanism through which TIM-1 participates
in the inflammation reactions and immune regulation in
sepsis. Therefore, TIM-1 may serve as a novel drug target
for diseases with Th1/Th2 imbalance, such as sepsis.
TIM-1 may also serve as a clinical marker for sepsis,
playing a role in early diagnosis and intervention.

In addition, TIM-1 plays an important role in
regulating Treg cell function. Studies have confirmed that
activation of TIM-1 can reduce the expression of certain
cell molecules, such as Foxp3, in Treg cells, impairing
their function and reducing the conversion of other cells
into Tregs. This leads to an immune imbalance between
Th17 and Treg cells, affecting the levels of inflammatory
factors [27] and ultimately resulting in immune
dysregulation, thereby contributing to the development of
sepsis and affecting its outcome and prognosis.

Since TIM-1 is a receptor for PS, cells expressing
TIM-1 can bind to and/or engulf apoptotic cells that
express PS, mediating the clearance of apoptotic cells and
thus participating in the body's immune response.

2.2 TIM-3

TIM-3 is also a member of the 7/M gene family. A
large number of experimental data supports TIM-3 as an
immune checkpoint, and targeting TIM-3 is a promising
immune therapeutic approach. Recent research has found
that TIM-3 plays an important role not only in chronic
viral infections and cancer [28] but also in sepsis, where it
plays a critical role in the immune functions of sepsis
monocytes, macrophages and T lymphocytes [29].
Specifically, blocking the TIM-3 pathway can exacerbate
the pro-inflammatory = macrophage response and
lymphocyte apoptosis induced in the early stages of
sepsis. However, in the later stages of sepsis, co-culturing
TIM-3-deficient macrophages with T cells induces a shift

towards a Th2 response, which promotes immune
suppression during the later stages of sepsis [5].

During acute sepsis, TIM-3 expression on
macrophages is upregulated, significantly inhibiting the
production of pro-inflammatory cytokines mediated by
Toll-like receptors (TLRs), thus alleviating the
inflammatory response [30]. Numerous studies have
proven the important role of TLRs in the pathogenesis of
sepsis [31]. The negative regulation of TLR by TIM-3
helps prevent excessive inflammation during the acute
phase of sepsis and mitigates the disease, suggesting that
this pathway may become a new target for sepsis therapy.
Furthermore, clinical studies have found that TIM-3
expression on CD4" T cells is increased in septic patients,
and its levels correlate with the severity of immune
suppression in these patients. In septic mice, inhibiting
TIM-3 expression reduced the mortality rate associated
with septic immunosuppression [32]. Studies also found
that during early sepsis induced by cecal ligation and
puncture, TIM-3 expression increased in CD8" T cells in
the spleen, and blocking TIM-3 with anti-TIM-3
antibodies reduced inflammation and lymphocyte
apoptosis, as well as alleviated sepsis severity [33].
Moreover, inhibiting TIM-3 expression can control the
excessive activation of natural killer T cells in septic
patients, thus alleviating the inflammatory cytokine
cascade triggered by NKT cells, which otherwise leads to
poor prognosis in sepsis patients. This helps maintains
immune homeostasis and improves prognosis [34].
Therefore, targeting TIM-3 expression may provide a
novel approach for immunotherapy in sepsis.

Additionally, since phosphatidylserine is a ligand for
TIM-3, the interaction between TIM-3  and
phosphatidylserine mediates the phagocytosis of
apoptotic bodies [23] and promotes cross-presentation by
dendritic cells, enhancing the phagocytosis of apoptotic
cells and cross-presenting antigens. This, in turn,
regulates immune cells and pathogenic pathways [28].

2.3 TIM-4

The expression of TIM-4 gene was significantly
upregulated in peritoneal macrophages from septic mice
following activation. TIM-4 can attenuate the
development of endotoxin-induced sepsis in mice, and
this process may be mediated by negative regulation of
macrophage function [4], suggesting that TIM-4 holds
significant potential as a therapeutic target for immune
modulation in sepsis.

TIM-4 is a phosphatidylserine receptor [35], which
is expressed on antigen-presenting cells such as
macrophages and mature dendritic cells, and is involved
in the recognition and clearance of apoptotic cells.
Moreover, studies have shown that TIM-4 is expressed on
various other immune cells. One of its most important
functions is its expression on macrophages, where TIM-4
interacts with its ligand, phosphatidylserine, to mediate
its effects. This interaction allows TIM-4-expressing
macrophages not only to recognize apoptotic cells but
also to activate various immune cells, including T cells,
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by recognizing different densities of PS. When pathogens
enter the body, phagocytic cells expressing high levels of
TIM-4 rapidly recognize PS and engulf apoptotic cells or
antigen-specific T cells, thereby clearing apoptotic cells
or reducing the number of antigen-specific T cells in the
periphery. This process helps regulate immunity by
balancing the number and ratio of antigen-specific T cells
and memory T cells, ultimately inducing immune
tolerance [36]. Studies have found that after endotoxin
stimulation, TIM-4 expression is upregulated on the
surface of activated macrophages in mice. The increased
expression of TIM-4 inhibits the production of NO and
cytokines (TNF-o, IL-1B, IL-6, and IFN-B) by
macrophages, thereby alleviating the occurrence of
endotoxin-induced septic shock in the early stages of
sepsis [37]. However, in the late stages of sepsis, the
expression of TIM-4 in  peripheral  blood
monocytes/macrophages is significantly decreased,
leading to macrophage dysfunction, loss of phagocytic
ability, and an immunosuppressive state. Secondary
infections become the leading cause of death in late-stage
sepsis patients. This suggests that TIM-4 plays an
important role as a target for immune modulation therapy
in sepsis.

TIM-1, a natural ligand of TIM-4, is expressed on
activated macrophages or mature dendritic cells, and the
increased expression of TIM-4 on these cells can bind to
TIM-1 expressed on the surface of activated T cells. This
binding induces phosphorylation of TIM-1, activating a
series of signaling pathways that ultimately regulate T
cell proliferation and balance Th1/Th2 cell differentiation
[38]. Thus, TIM-4 contributes to the maintenance of
immune homeostasis in sepsis and is involved in the
development and progression of sepsis. Furthermore,
research has shown that TIM-4 can also bind to TIM-3 on
the surface of Thl cells, inducing Th1 cell apoptosis [39].
This promotes an immune suppressive phase dominated

by Th2 cells in sepsis patients, accelerating their mortality.

Therefore, the TIM gene family members and their
interactions play a significant role in the development of
sepsis, and understanding these interactions is crucial for
early diagnosis and prognosis-based treatment of sepsis.
The pathogenesis of sepsis is complex, involving
mechanisms such as the inflammatory cascade, excessive
oxidation, immune cell dysregulation, coagulopathy, and
fibrinolysis, all of which interact to form a complex
pathogenic network in sepsis. Among these, inflammation
and immune system damage remain the most critical
factors for sepsis patients. The TIM gene family is widely
involved in immune responses and offers new insights
and methods for immunotherapy in sepsis and other
immune-related diseases. It is hoped that 7/M genes and
their proteins will become important indicators for the
diagnosis, severity assessment, and prognosis of sepsis,
and serve as potential targets for molecular or
gene-targeted therapies in sepsis. However, the clinical
application of the T7IM gene family and its proteins
requires further experimental and clinical research.
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