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Metastatic recurrence of colorectal cancer (CRC)
cells within a few years after initial treatment is a
common and malignant phenomenon. High metastasis
rates are a major reason for the high incidence of
advanced CRC, low cure rates, and high mortality rates
[1]. The tumor microenvironment represents a complex
ecosystem that is closely associated with tumor
metastasis, including tumor cells, immune cells,
cancer-associated fibroblasts (CAFs), endothelial cells,
extracellular matrix (ECM), and other components [2].
This paper reviews the metastasis process of CRC,
analyzing the interactions between the tumor
microenvironment and primary tumors, secondary tumors,
circulating tumor cells, and disseminated tumor cells. It
aims to elucidate the mechanisms involved in different
stages of CRC metastasis from the perspective of the
tumor microenvironment.

1 Changes in the Local Microenvironment of
Primary Tumors

1.1 Preparation for cancer cell invasion

Invasion is a complex, multi-step process involving
the detachment of cancer cells from the primary tumor
mass and their penetration into the surrounding stroma
[3-4]. Phenotype switching is a necessary process during
invasion when cancer cells are exposed to changing
cellular and molecular components of the tumor
microenvironment. Several studies have shown that CRC
cells undergo epithelial-to-mesenchymal transition (EMT)
during invasion, losing their epithelial phenotype and
acquiring a mesenchymal phenotype [5]. During EMT,
epithelial cells lose their cellular polarity and intercellular
adhesion, gaining migratory and invasive properties

characteristic of mesenchymal stem cells [6]. Cellular
markers also change during EMT, in which the expression
of epithelial markers such as E-calmodulin and keratins is
absent, while the expression of mesenchymal markers
such as vimentin, N-cadherin, and fibronectin is increased.
Notably, the decrease of E-cadherin can lead to a decrease
in cellular adhesion, enhancing the ability to invade and
metastasize. The loss of E-cadherin is considered one of
the most significant features of EMT [7]. Therefore, the
EMT process facilitates the separation of adjacent cancer
cells, enhancing their migratory, invasive, anti-apoptotic,
and extracellular matrix-degrading capabilities, thus
promoting cancer metastasis. Regulatory factors such as
DDX21, circSKA3, and Slug are closely related to EMT
in CRC. DDX21, a representative RNA-binding protein,
is significantly upregulated in CRC tissues compared to
adjacent normal tissues. The phase separation aggregates
of DDX21 target and activate the MCM5 gene, further
activating the EMT signaling pathway and promoting
liver and lung metastasis of CRC [8]. CircSKA3 is
upregulated in CRC tissues but downregulated in serum
samples and is retained in CRC cells through specific
cellular motif elements. These motifs are also the sites of
interaction between circSKA3 and the zinc finger
transcription factor SLUG, which inhibits E-cadherin
transcription and enhances EMT through E-box elements
[9-10].

In addition to EMT, perineural invasion (PNI) has
become an increasingly studied factor in tumor invasion
processes such as CRC. PNI is a significant form of
tumor cell invasion into the surrounding stroma and
metastasis along the nerve sheath, defined as the presence
of cancer cells in any layer of the nerve sheath or at least
33% of the nerve fiber circumference [11]. It has been
shown that PNI is a marker of more aggressive tumor
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phenotypes and poor prognosis in malignant tumors, with
a S-year overall survival rate of 72% for PNI-negative
CRC and 25% for PNI-positive CRC [12]. PNI represents
a clear pathway for cancer cell invasion and
dissemination; however, the role of nerves in cancer
progression remains relatively unknown. Some studies
suggested that nerve infiltration into the tumor
microenvironment was an active process [13].
Tumor-infiltrated nerve fibers can stimulate tumor growth
and spread, while tumor cells can drive excessive nerve
growth in interactions that promote tumor progression
[11]. CRC liver metastasis is strongly associated with PNI
due to the rich sympathetic nerve fibers that innervate the
liver, which may originate from the same preganglionic
source as those innervating the colon and rectum [14].

Among all the stromal cells in the tumor
microenvironment, CAFs are the most abundant and
closely related to cancer progression. CAFs regulate the
biological properties of tumor cells and other stromal
cells through cell-to-cell communication, releasing
numerous regulatory factors, synthesizing, and
remodeling the ECM, thus affecting cancer development
and progression [15]. Franze et al. [16] demonstrated that
IL-34 could induce normal fibroblasts to acquire a
CAF-like phenotype in CRC, and IL-34 knockout in
CAFs reduced their tumorigenic properties. The most
distinctive feature of CAFs is their high capacity for
ECM synthesis and remodeling during the fibrotic
response. Activated fibroblasts produce large amounts of
various types of collagens, hyaluronic acid, fibronectin,
and laminin, which constitute the ECM and basal
membrane [15]. ECM remodeling leads to tissue
mechanical stiffening and stromal fibrosis, increasing
tension in the surrounding tissue of the tumor. CAFs exert
pulling forces through this remodeling property,
promoting cancer cell invasion through the tumor
microenvironment and generating physical tracks in the
ECM, facilitating collective invasion of cancer cells
[17-18].

1.2 Preparation for cancer cell intravasation

Cancer cell intravasation refers to the process by
which cancer cells cross the endothelial layer to enter the
circulation. The integrity of the vascular system within
tumors is often compromised, with potential damage to
the vascular basement membrane and endothelial barrier,
leading to increased vascular leakage and facilitating
cancer cell intravasation [19]. Tumor-associated
macrophages play a critical role in cancer cell
intravasation. Macrophages can be classified into two

phenotypes based on their functions and cytokine profiles:

the pro-inflammatory M1 type and the anti-inflammatory
M2 type [20]. In tumor-associated diseases, Ml
macrophages exhibit anti-tumor effects and inhibit tumor
growth, while M2 macrophages display pro-tumor effects
and promote the formation of new blood vessels in
tumors [21]. During intravasation, tumor-associated
macrophages localize to the perivascular niche and induce
angiogenesis by modulating matrix metalloproteinase

(MMPs), serine proteases, and tissue proteases, degrading
the basement membrane, and secreting pro-angiogenic
factors, cytokines, and chemokines, including vascular
endothelial growth factor (VEGF), chemokine (C-X-C
motif) ligand (CXCL)8, MMP7, MMP9, and MMP12.
This promotes the formation of the tumor vascular
network. For instance, the VEGF-A signaling pathway
induced by M2 macrophages leads to a transient increase
in vascular permeability, aiding cancer cells in breaching
the vascular barrier and promoting cancer cell infiltration.
Removal of VEGF-A from macrophages can inhibit the
phosphorylation of tumor VEGFR2, thereby restoring
normal vascular development [22]. During CRC
progression, M2 polarization of tumor-associated
macrophages is regulated through various pathways.
Runt-related transcription factor 1 (RUNX1) can promote
the secretion of C-C motif ligand 2 (CCL2) and activate
the Hedgehog signaling pathway to recruit macrophages
and induce their polarization to M2, thereby promoting
tumor angiogenesis and malignant behavior of cancer
cells [23]. Microbes promote the formation of
intra-tumoral lactate, which induces polarization of
macrophages to the M2 phenotype through lactylation
modification of macrophage RIG-Ilys852, regulating
CRC liver metastasis [24]. Exosomal miR-1246 plays a
critical role in the reprogramming of CRC-associated
macrophages, driving tumor-associated macrophages to
polarize towards a tumor-supportive (M2) phenotype,
thereby impairing the infiltration and function of CD8" T
cells [25].

CAFs play a crucial role in remodeling the basement
membrane and extracellular matrix, and they also impact
the infiltration process of CRC cells. CAFs isolated from
CRC not only invade the basement membrane through
matrix metalloproteinases, but also exert mechanical
contraction forces on the basement membrane through
pulling and stretching. Thus, in addition to proteolysis,
the mechanical forces exerted by CAFs represent another
mechanism by which CAFs facilitate cancer cell
infiltration [26]. CAFs located proximally to tumors can
collaborate with tumor-associated macrophages to
complete the infiltration process. CAFs secrete CXCL12
chemokine, attracting tumor-associated macrophages and
accompanying cancer cells to the perivascular region,
where infiltration of cancer cells is promoted [27].

2 Formation of Premetastatic Niches Prior to
Secondary Tumor

The impact of developing tumors on the host extends
beyond the local tumor microenvironment. Through
paracrine effects, primary tumors trigger a series of
events that create a favorable microenvironment for
cancer cells in distant organs before metastatic spread
occurs. The primary tumor prepares a distant site, well
beyond the tumor boundaries, for the arrival of
disseminated cancer cells, known as the premetastatic
niche.

The specific mechanisms of premetastatic niche
formation in CRC are not fully understood. Some studies
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suggested that in CRC liver metastasis, the hypoxic
microenvironment in primary CRC lesions promoted the
release of exosomes, selectively initiating the formation
of premetastatic niches in the liver. Kupffer cells (KCs) in
the liver can phagocytose exosomes containing high
levels of miR-135a-5p from the blood circulation.
Exosomal miR-135a-5p activates the
LATS2-YAP-MMP7 axis to promote CRC liver
metastasis, and CD30-TRAF2-p65-mediated immune
suppression also contributes to this process [28]. Other
studies suggested that TGF-B1-rich extracellular vesicles
derived from CRC cells induced the formation of
premetastatic niches in the liver. TGF-B1 is a key factor in
the formation of liver premetastatic niches and is closely

related to the occurrence and prognosis of liver metastasis.

Specifically, extracellular vesicles released by CRC cells
induce hepatic stellate cells (HSCs) to transform into
CAFs, thereby remodeling the liver premetastatic niche.
Extracellular vesicles also activate HSCs to secrete the
CXCL12, further recruiting myeloid-derived suppressor
cells, leading to liver immune suppression and enabling
the immune escape of disseminated cancer cells [29].
Research found that CRC patients with fatty liver are
more prone to liver metastasis. The potential mechanism
was closely related to the premetastatic niche. Fatty liver
upregulates Rab27a expression, promoting hepatocytes to
produce hepatocyte-derived extracellular vesicles. These
vesicles enhance CRC liver metastasis progression by
promoting carcinogenic Yes-associated protein signaling
and immune-suppressive microenvironments [30].

3 Circulating Tumor Cells and the Tumor
Microenvironment

3.1 Microenvironment attacks and circulating tumor
cell evasion

After intravasation, tumor cells enter the
bloodstream or lymphatic circulation and become
circulating tumor cells (CTCs). These cells face a range
of damages and challenges from the foreign
microenvironment during circulation. Factors such as cell
detachment-induced apoptosis, high shear stress in the
blood circulation, and immune-mediated attacks
collectively contribute to the death of most CTCs [31-33].
The small fraction of CTCs that survived the cycle
avoided destruction through multiple mechanisms.
Laminar shear stress (LSS) upregulates ATOH8 protein
expression in CTCs of CRC through the
VEGF-VEGFR2-AKT signaling pathway, promoting
hexokinase 2 (HK2) transcriptional activity and
mediating CTC survival [34]. Platelets are also key
promoters of CTCs survival. Their mechanisms include
enhancing CTCs adhesion and aggregation, forming a
“platelet shield” around CTCs that protects them from
physical stress and destructive forces from NK cells,
cytotoxic T cells, dendritic cells, and other immune
surveillance [35]. Recent studies also found elevated
platelet counts and Erbin protein expression in platelets in

patients with metastatic CRC, and Erbin gene knockout in
platelets can inhibit CRC lung metastasis in mice,
providing a new avenue for metastatic treatment [36].

3.2 Extravasation of CTCs

The next step for the small portion of CTCs that
survived the cycle is extravasation into secondary organs,
which is partly determined by the organotropism inherent
to each primary cancer type. The classic theory is Paget's
"seed and soil" hypothesis proposed in the 1880s [37].
This metastatic propensity is highly specific. CRC
patients primarily metastasize to lymph nodes, liver, and
lungs, with some cases spreading to bones and ovaries
[38]. The organotropism of CRC metastasis is influenced
by multiple mechanisms. Comprehensive analysis of
epithelial cells showed that subpopulations of stem-like
cells expressing high levels of protein tyrosine
phosphatase receptor type O and ASCL2 transcription
factors exhibited different preferences for liver or ovarian
metastasis. Cells expressing high 6-like ligand 4 and
MAF bZIP transcription factor A were enriched in
primary CRC and ovarian metastases, suggesting a
possible link to ovarian metastasis. P3 cells, which have
similar expression patterns to cholangiocytes, were
primarily found in primary CRC and liver metastases,
indicating they maight be major contributors to
liver-specific metastasis [39].

For extravasation itself, tumor cells must first adhere
and attach to the endothelial cell lumen, a process
facilitated by the cell adhesion molecules and their
ligands, integrins, and extracellular matrix components
expressed by both tumor cells and endothelial cells [40].
Platelets and neutrophils may continue to move with
CTCs, further enhancing tumor cell adhesion to the
vascular system [41-42]. Platelet adhesion to the
endothelial wall is crucial for metastatic disease
progression. Platelets can increase the adhesion levels
between cancer cells and endothelial cells, and
antiplatelet drugs may reduce adhesion between
colorectal cancer cells and endothelial cells, potentially
reducing metastatic spread [43]. CRC-derived IL-8 can
recruit neutrophils to the liver, forming neutrophil
extracellular traps (NETs). NETs capture disseminated
tumor cells, allowing CTCs to colonize the liver and
stimulating the secretion of IL-8 by CRC cells in
metastases, which in turn recruits more neutrophils,
creating a feedback loop that promotes colorectal cancer
cell migration and invasion [44]. After adhesion, CTCs
subsequently traverse endothelial cell junctions and enter
the organ parenchyma. This typically requires active
proteolysis and degradation of cell adhesion molecules,
including junctional adhesion molecules and cadherins
[45-46]. In CRC research, the elevated expression of type
I collagen receptor tyrosine kinase in samples from stage
T4, lymph node metastasis, and peritoneal metastasis
patients suggested that DDR2 expression levels might be
a potential therapeutic target for CRC metastasis [47].
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4 Disseminated Tumor Cells and Tumor

Microenvironment

After infiltration into the secondary site, tumor cells
complete metastatic seeding, becoming disseminated
tumor cells (DTCs) and facing a new set of challenges
from the foreign tissue environment, and the vast majority
of tumor cells are again killed by host defense
mechanisms [48]. The few DTCs that survive to be
implanted in the new organ may initially enter a dormant
state to protect them from recognition and killing by the
immune system, these cells stop proliferating in the
dormant state and survive in a quiescent state for several
years, DTCs can lead to metastasis and recurrence of the
cancer after the dormant period [49]. It has been shown
that colorectal cancer cells that metastasize to the liver do
not immediately form lesions visible to the naked eye.
Instead, these cells enter a dormant phase in the liver and
become resistant to therapeutic interferences. In studying
the factors affecting tumor dormancy, it was found that
low levels of FBXS8 expression were associated with
lower overall survival in patients with CRC, and that
FBX8 upregulated a number of markers associated with
tumor cell dormancy, as well as downregulating genetic
markers associated with dormancy activation in tumor
cells. Based on these findings, FBX8 may be involved in
CRC dormancy at liver metastasis sites, which provides a
potential target for the treatment of dormant CRC liver
metastatic cells and a new theory for the prevention and
treatment of tumor metastasis [50].

In summary, the complex dynamic process of CRC
metastasis needs to be considered holistically in terms of
both tumor cell intrinsic factors and tumor
microenvironment extrinsic factors in understanding the
process. The complexity of the metastatic process of
colorectal cancer also suggests that the anticancer effect
of drugs with a single target may be limited, and it is
necessary to explore the whole process of tumor invasion,
endocytosis, circulation, exocytosis, and seeding, to
develop drugs targeting a variety of targets in response to
the many influencing factors of the dynamic process of
cancer metastasis, and to search for individualized
therapeutic approaches targeting the tumor
microenvironment, which has become a difficult and hot
spot of the current research on CRC metastasis.
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