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The mechanism of action of general anesthetics is
one of the major scientific problems urgently needing
resolution in the field of natural sciences [1]. Research
into this scientific issue is crucial for the safety of
general anesthesia and the development of new types of
general anesthetics drugs. According to a 2019 report in
Lancet, every year there are 313 million surgeries
performed globally, and the vast majority of them
require completion under general anesthesia [2].
However, within 30 days post-anesthesia, 4.2 million
people die, ranking anesthesia-related deaths as the third
leading cause globally, following ischemic heart disease
and stroke [2]. Inhalation anesthetics are widely used in
clinical anesthesia for their sedative, analgesic, and
muscle relaxant effects. Whether in basic research or
clinical practice, researchers have found differences in
the minimum alveolar concentration required for
inhalation anesthetics between experimental animals and
humans maintaining the same depth of anesthesia,
indicating sensitivity differences between them.
Differences in inhalation anesthetic sensitivity are
related to the depth of anesthesia during general
anesthesia. Excessive anesthesia depth can cause
delayed awakening or even increase postoperative
mortality rates in patients, while shallow anesthesia can
lead to hemodynamic fluctuations, cardiovascular events,
and intraoperative awareness [3]. Moreover, increased
sensitivity to inhalation anesthetics often predicts poor
postoperative outcomes; for example, patients highly
sensitive to sevoflurane tend to have prolonged

extubation time [4].

Mitochondria are semi-autonomous double-
membrane organelles that provide the majority of
cellular energy through the citric acid cycle and
oxidative phosphorylation. For a long time, inhibition of
mitochondrial function has been considered a toxic side
effect of general anesthetics [5]. From nematodes to
mammals, including humans, defects in mitochondrial
function increase sensitivity to inhalational anesthetics
[6-7], suggesting a possible link between energy
metabolism and sensitivity to inhalational anesthetics.
Research has found that metabolites related to
mitochondrial energy metabolism, mitochondrial ion
channels, and other factors are associated with
sensitivity to inhalational anesthetics. Therefore, this
article provides a brief overview of mitochondrial
sensitivity, mitochondrial-related genes, metabolites, ion
channels, and mechanisms related to sensitivity to
inhalational anesthetics.

1 Overview of Sensitivity to Inhalation Anesthetics

Inhalation anesthetics encompass a group of
general anesthetics with diverse chemical structures and
pharmacological effects, including volatile liquids (such
as ether, isoflurane, sevoflurane, desflurane) and
inorganic gases (such as nitrous oxide, xenon). Volatile
liquids are also commonly used in clinical settings.
Inhalation anesthetics exhibit sedative, analgesic, and
muscle relaxant properties simultaneously. Therefore,
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they are preferred for minimally stimulating, short-
duration surgical or diagnostic procedures. They are also
prioritized for patient obese, elderly, and patients with
hepatic or renal dysfunction. Third-generation inhalation
anesthetics like sevoflurane and desflurane offer
advantages such as rapid onset, quick recovery, organ
protection, and minimal impact on circulatory function.
Precise control of drug dosage during maintenance
through end-tidal concentration monitoring has led to the
widespread clinical application of inhalation anesthetics.

1.1 Mechanism of Action of Inhalation Anesthetics

Since the first use of ether in surgery, the use of
inhalation anesthetics has evolved over 170 years.
Despite their widespread clinical use, their specific
mechanisms of action remain unclear, hindering efforts
to reduce their toxic side effects, adverse reactions, and
optimize their anesthetic effects [8]. The main theories
regarding the mechanism of action of inhalation
anesthetics include lipid theory and protein theory.
Current consensus suggests that inhalation anesthetics
exert pharmacological effects by acting on different
molecular targets within the central nervous system,
leading to specific pharmacological actions. For instance,
regions like the hippocampus and amygdala are
primarily involved in the amnesic effects of inhalation
anesthetics [9], while the cerebral cortex and
hypothalamus participate in loss of consciousness [10].
Research indicates that inhalation anesthetics can affect
ion channels or receptors in the central nervous system,
inhibit phagocytosis, and disrupt synaptic transmission
[11-12].

Inhalation

1.2 Mechanisms of Sensitivity to

Anesthetics

Sensitivity to inhalation anesthetics refers to
significant differences in the required end-tidal
concentration of inhalation anesthetics to maintain the
same depth of anesthesia among experimental animals
or patients. Studies indicate that genetic variations and
subsequent changes in downstream metabolites are
related to sensitivity to inhalation anesthetics.
Additionally, abnormalities in mitochondrial structure
and function are also associated with sensitivity to
inhalation anesthetics. Mitochondrial-related genes, ion
channels, metabolite changes, and alterations in
mitochondrial energy metabolism affect sensitivity to
inhalation anesthetics in experimental animals or
humans. Inhibiting mitochondrial respiratory function
enhances the anesthetic efficacy of inhalation anesthetics
[12]. Therefore, further research on mitochondria holds
promise for elucidating the mechanisms of sensitivity to
inhalation anesthetics and the mechanisms of general
anesthesia overall.

2 Inhalational Anesthetic Sensitivity and

Mitochondrial Mechanisms

2.1 Mitochondrial-related Genes and Inhalational
Anesthetic Sensitivity

Mitochondrial complex I, a rate-limiting enzyme in
the mitochondrial respiratory electron transport chain,
has been implicated as the primary molecular
mechanism affecting sensitivity to inhalational
anesthetics. Studies have suggested that inhibiting the
function of mitochondrial complex I contributes
significantly to altered sensitivity to inhalational
anesthetics in both experimental animals and patients [6-
7]. Genetic variations affecting mitochondrial-related
genes have been linked to sensitivity to inhalational
anesthetics in experimental animals such as fruit flies,
nematodes, and mice [13]. For instance, mutations in the
gas-1 and ND23 genes, which encode subunits of
mitochondrial complex I, impact mitochondrial
respiratory function. Research using nematodes with
gas-1 mutations has shown significantly increased
sensitivity to isoflurane [14], and fruit flies with ND23
mutations also exhibit increased sensitivity to
inhalational anesthetics [13].

Changes in sensitivity to inhalational anesthetics in
these experimental animals are associated with reduced
ATP synthesis due to mitochondrial complex I gene
mutations, leading to disruptions in neurotransmitter
transmission and cellular transport processes in the
nervous system. Ultimately, these alterations affect the
efficacy of inhalational anesthetics on the central
nervous system [15-16]. In short, this is because
countless biological processes within the central nervous
system are highly dependent on energy, and changes in
mitochondrial function are bound to affect ATP
production and affect neurological function, ultimately
leading to changes in anesthesia sensitivity [17].
Therefore, mitochondrial gene mutations can lead to
changes in the sensitivity of inhaled anesthetics, and
gene mutations that affect the sensitivity of inhaled
anesthetics may help identify genes and related gene
products involved in regulating arousal [18].

2.2 Other Energy Metabolism-related Genes and
Inhalational Anesthetic Sensitivity

In addition to mutations in mitochondrial complex
I affecting inhalational anesthetic sensitivity, mutations
in other genes related to mitochondrial energy
metabolism are also associated with sensitivity to
inhalational anesthetics. A clinical study using whole-
exome sequencing of patients with differential
sensitivity to sevoflurane identified 8 single nucleotide
polymorphisms (SNPs) across 4 genes—FAT2 (SNPs
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rs174272, rs174271, and 1s174261), ADIl (SNP
rs117278), NEDD4 (SNPs r1s70048, rs70049, and
rs70056) and FOXRED2 (SNP 1s144281) [19].
Mutations in FAT2, ADII, and NEDD4 genes are
associated with altered sensitivity, all of which affect
mitochondrial energy metabolism. Whether FOXRED?2
mutations affect anesthetic sensitivity through oxidative
stress response requires further validation. Thus,
differences in the frequencies of these SNP mutations are
likely to impact gene function, affecting the roles of
these genes' encoded proteins in mitochondrial energy
metabolism and possibly influencing differential
sensitivity to sevoflurane among patients. In conclusion,
mitochondrial energy metabolism has been extensively
studied in relation to sensitivity to inhalational
anesthetics in experimental animals, and genes related to
energy metabolism may become a new focus for general
anesthesia.

2.3 Mitochondrial-related Metabolites and Metabolic
Pathways and Inhalational Anesthetic Sensitivity

Inhalational  anesthetics can rapidly and
significantly influence organism metabolism [20], and
the metabolic status of the organism may, in turn, affect
the efficacy of general anesthetics. Changes in whole-
body or local tissue metabolites may affect
mitochondrial-related metabolism, thereby influencing
mechanisms of sensitivity to inhalational anesthetics.

A metabolomic study of patients with differential
sensitivity to sevoflurane revealed that ethyl 5-
aminopentanoate levels were higher in the low-
sensitivity group compared to the high-sensitivity group.
This difference is attributed to variations in ethyl 5-
aminopentanoate causing differences in lysine
degradation, which affects mitochondrial respiratory
function and energy metabolism to varying degrees,
potentially contributing to differential sensitivity to
sevoflurane among patients [21]. Additionally, the study
indicated that levels of L-glutamine, glutamic acid, L-
selenocysteine, and sphingosine may be associated with
sensitivity to sevoflurane, as these metabolites are
involved in the tricarboxylic acid cycle and glutamate
metabolism, which can affect sensitivity to inhalational
anesthetics [22]. In another basic research study, it was
found that chronic hypoxic conditioning increases O-
glycosylation in the brain, particularly in the thalamus,
accelerates de novo synthesis of glutamine by astrocytes,
and activates glutamine synthetase, thereby accelerating
the glutamine-glutamate cycle and reducing sensitivity
to sevoflurane anesthesia in mice [23]. It has been
demonstrated that glutamate-related metabolism can
mediate differences in sensitivity to inhalational
anesthetics [22]. Thus, changes in metabolites causing
alterations in mitochondrial energy metabolism may lead
to changes in sensitivity to sevoflurane anesthesia. These
studies, focusing on metabolites and metabolic pathways,

provide new insights into anesthesia management for
patients with differential sensitivity to inhalational
anesthetics.

2.4 Mitochondrial lon Channels and Sensitivity to
Inhalational Anesthetics

2.4.1 Two-pore-domain potassium channels and
Sensitivity to Inhalational Anesthetics

General anesthetics promote the opening of
potassium channels, enhancing inward potassium
currents, thereby reducing neuronal excitability and
facilitating  unconsciousness [24]. TWIK-related
potassium (TREK) channels are part of the two-pore-
domain potassium (Kzp) channel family, abundant in the
central nervous system where they help regulate intrinsic
neuronal excitability. TREK-1, a type of potassium ion
channel within this family, is sensitive to anesthesia and
activated by phospholipase D2 (PLD2) [25]. Genetic
deletion of TREK-1 reduces sensitivity to inhalational
anesthetics in mice. Clinically used concentrations of
inhalational anesthetics activate TREK-1, making this
channel a relevant target for these drugs [26]. Moreover,
the sustained opening of TREK potassium channels
activated by isoflurane is the reason why isoflurane has
a lower Minimum Alveolar Concentration (MAC).
Norfluoxetine, as a TREK channel blocker, can block
TREK channels and restore MAC to normal [27],
indicating that MAC changes in inhaled anesthetics are
related to TREK potassium channels.

Given that TREK-I activation depends on PLD2,
inhalational anesthetics can directly affect PLD2 in the
plasma membrane to activate this ion channel. These
findings suggest that membrane-mediated sensitivity
mechanisms of inhalational anesthetics may involve
related proteins [28]. Further research indicates that
AMP kinase-dependent phosphorylation of TREK
channels is influenced by mitochondrial energy output
[29], suggesting mitochondrial function changes may
affect the channel's function [30]. Thus, the two-pore-
domain potassium channel TREK is associated with
sensitivity to inhaled anesthetics, and its mechanism may
still involve changes in mitochondrial function, affecting
the function of this ion channel.

2.42 Sodium Ion Channels and Sensitivity to
Inhalational Anesthetics

Navl1.6 is a primary voltage-gated sodium channel
in the central and peripheral nervous systems, crucial for
generating and sustaining neuronal currents. Decreased
activity of Nav1.6 sodium channels in mice increases
sensitivity to inhalational anesthetics, possibly due to
reduced neuronal excitability associated with Na* [31].
Thus, Navl.6 involvement in mouse sensitivity to
inhalational anesthetics suggests it may serve as a target
for these drugs [31]. It is well-known that ion channel
mechanisms are closely linked to ATP, with
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mitochondria being the primary site of ATP production.
Research suggests a novel potassium ion channel in rat
brain mitochondria inhibited by Na; during neuronal
excitation and increased intracellular  sodium
concentration, Na* inhibit brain mitochondrial sodium-
sensitive potassium ion channels and complex I activity
[32]. Therefore, reduced Navl.6 channel activity
enhances sensitivity to inhalational anesthetics,
potentially involving inhibition of mitochondrial
complex I. However, the precise relationship between
these mechanisms remains unclear. Thus, Navl.6
channels may be considered a target for future research
on inhalational anesthetic sensitivity.

3 Prospects

In summary, mitochondrial complex I and energy
metabolism-related gene mutations, mitochondrial-
related metabolites and pathways, and mitochondrial ion
channels participate in the mitochondrial mechanisms of
inhalational anesthetic sensitivity. Additionally, direct
mitochondrial damage can alter sensitivity [33].
Interestingly, only mitochondrial complex I subunits are
associated with inhalational anesthetic sensitivity,
whereas mutations in complexes II-V do not affect
sensitivity [34], requiring further investigation into the
specific mechanisms involved. Inhibiting mitochondrial
respiratory function can increase anesthetic efficacy in
experimental animals [12]. Therefore, patients with
mitochondrial-related  functional impairments or
structural defects should be cautious of heightened
sensitivity to inhalational anesthetics during general
anesthesia, aiming to prevent deep anesthesia during the
perioperative period as much as possible. In conclusion,
future research should focus on mitochondrial
mechanisms of inhalational anesthetic sensitivity, crucial
for patient postoperative outcomes and providing new
directions for understanding the mechanisms of
inhalational anesthetics.
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