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Abstract: Denervation is closely related to many cardiovascular diseases, such as myocardial infarction, myocardial ischemia-
reperfusion injury, hypertension, arrhythmia, heart failure, atherosclerosis and ventricular remodeling. Denervation affects the
patient's resting heart rate and response to exercise in the early stages of cardiac transplantation. Therefore, this article reviews
the research progress of denervation in the treatment of cardiovascular disease and elaborates on the mechanism of
denervation in the treatment of cardiovascular disease, intending to provide new complementary treatment methods for the
treatment of cardiovascular diseases.
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Cardiovascular disease (CVD) is a significant transplantation. Although renal denervation occurs in the

contributor to global death and disability and a major cause
of the world's disease burden. Data show that the burden
of CVD has increased in most countries for decades
[1]. Prevention and treatment of CVD mainly consist of
pharmacologic and surgical therapies aimed at preventing
risk factors, alleviating patients' clinical symptoms, and
improving their quality of life. In recent years, with the
continuous development of radiofrequency and ultrasound
technologies, denervation treatment through interventional
therapy has shown positive results in many CVDs as a new
complementary  treatment. The  efficacy of  renal
denervation (RDN) in treating renal hypertension has been
demonstrated in recent years. However, the efficacy and
safety of denervation as a therapeutic modality in other
CVDs have yet to be investigated. In addition, patients
with end-stage cardiomyopathy usually need to seek
cardiac transplantation, and the occurrence of denervation
inevitably accompanies the implementation of cardiac

later stages of the transplanted heart, the effect of pre-
transplantation denervation on the output of the
transplanted heart and the mechanism of its occurrence has
yet to be investigated.

1 Denervation
1.1 Overview of denervation

Denervation is caused by injury, disease, or surgery,
and can be the outcome of nerve damage. According to
Seddon's classification, the three main types of nerve
injury are nerve disuse, axonal dissection, and nerve
rupture [2]. In addition, denervation may be caused by
certain diseases. Patients with post-polio syndrome
continue to experience denervation and reinnervation, with
an increase in motor units compensating for the
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denervation to a certain extent, and loss of muscle strength
complicated by muscle atrophy following the loss of
compensation. Finally, reinnervation is associated with
surgical procedures. Denervation is used in treating
hypertension and as an early clinical consequence after
cardiac transplantation. Common types of denervation
include autonomic denervation (loss of sympathetic
innervation and loss of parasympathetic innervation),
muscle denervation due to nerve compression, and the use
of axonal microsurgery, neurotomy, and nerve blocks.

1.2 Cardiac denervation

Sympathetic and parasympathetic fibers of the
autonomic nervous system innervate the intact heart. Most
sympathetic fibers originate in the stellate ganglion and
innervate the heart via the right and left cardiac nerves [3].
The scope of cardiac autonomic regulation is extensive,
and denervation can have a dramatic effect on the
autonomic function of the heart. Cardiac denervation can
lead to loss of neural input to the sinus node, loss of
efferent and afferent neural signals from inside and outside
the heart, loss of sensory input to the ventricles, loss of
presynaptic neuronal uptake and hypersensitivity to
catecholamines. Thus, cardiac  denervation can  cause
consequent effects on myocardial contractility, heart rate,
and nocturnal blood pressure [4]. Ziegler et al. [5] found
that sympathetic denervation of the pineal gland is a
possible cause of physiological sleep-wake cycle
disruption and decreased melatonin levels in
cardiac patients. The denervation has been localized by
single-cell and RNA sequencing to the superior cervical
ganglion, which responds to cardiac disease by
accumulating inflammatory macrophages, fibrosis, and
selective loss of pineal innervation neurons. Depletion of
macrophages in the superior cervical ganglion prevents
pineal gland disinhibition associated with cardiac disease
and restores physiologic melatonin secretion. This study
identifies denervation as one of the mechanisms
underlying circadian rhythm disturbances in cardiac
disease. It suggests that cardiac disease can affect organs
distal to the anatomical site through spatial integration of
subpopulations of organ-specific neurons in the
sympathetic ganglia. In addition to its effects on cardiac
disease, the role of the sympathetic ganglion as a relay
station between organs warrants further exploration for
other diseases.

1.3 RDN

The effects of RDN on the cardiovascular system
are mediated by afferent and efferent nerves. Abundant
afferent nerve projections in the renal pelvic wall to the
paraventricular nucleus of the hypothalamus modulate
sympathetic nerves to innervate the heart, kidneys, and
small arteries, and efferent nerve activation induces
renin secretion, regulates sodium absorption and renal
vascular resistance, which in turn leads to increased
blood pressure and fluid retention, which is disrupted

with RDN [6]. In preclinical studies, a mouse model of
RDN was made by wrapping bilateral renal arteries with
10% phenol for 15 min until the bilateral renal arteries
turned white [7]. In clinical studies, RDN has been done
by radiofrequency ablation and ultrasound, which
reduces blood pressure by high-energy ablation of the
renal artery lining, thereby inhibiting sympathetic
nerves. Studies have shown that RDN has important
effects on hypertension, atherosclerosis, arrhythmia,
infarction, cardiac metabolism, cardiac circadian
rhythm, and myocardial inflammatory response.

2. Denervation and CVD

2.1 Denervation and myocardial
myocardial ischemia-reperfusion injury

infarction /

Myocardial infarction is the most common cause of
heart failure and a leading cause of mortality and morbidity
worldwide. Transmural myocardial infarction not only
leads to cardiomyocyte death, but also damages
sympathetic nerve fibers passing through the infarcted area,
resulting in local sympathetic denervation. Sympathetic
nerves are more susceptible to ischemic injury than
cardiomyocytes, and loss of sympathetic innervation is
strongly associated with ventricular arrhythmias and
sudden cardiac death. In an attempt to identify post-
infarction myocardial loss of sympathetic innervation and
potentially provide an alternative prognostic marker for the
risk of sudden cardiac death, Kiss er al.[8] first
demonstrated that cardiac loss of sympathetic innervation
after myocardial infarction can be significantly improved
by remote ischemic pre-adaptation, which may be
associated with a significant reduction in the expression
content of the chondroitin sulfate proteoglycan, a matrix
component in the cardiac scar, and inflammation.
Subsequently, Blake et al. [9] further found that loss of
chondroitin sulfate proteoglycan sulfation in a mouse
model delayed sympathetic reinnervation after cardiac
ischemia-reperfusion. Li e al.[10] in 6-hydroxydopamine-
induced cardiac loss of sympathetic innervation plays a
vital role in attenuating myocardial ischemia-reperfusion
injury through the IncRNA/CircRNA-SmRNA-mRNA
network in the upper thoracic spinal cord. The effects of
denervation on myocardial ischemia-reperfusion injury are
also associated with inflammation. Wang et al. [11] found
that RDN ameliorated oxidative stress, neurohormonal
activation, adverse left ventricular remodeling, and
intramyocardial inflammation in a large animal model with
concomitant ischemia/reperfusion (I/R) injury. Huang et al.
[12] found in a rabbit model of cardiomyopathy that RDN
inhibited the renin-angiotensin-aldosterone system and
inflammatory cytokine activity, thereby preventing cardiac
remodeling. The specific mechanism by which denervation
is involved in myocardial ischemia-reperfusion injury by
modulating inflammatory pathways in the above findings
may be that activation of the sympathetic nervous system
promotes the recruitment and homing of inflammatory
cells, especially neutrophils and macrophages.
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Studies have shown that the denervation of organs
and tissues other than the heart can likewise be involved in
the developmental process of CVD.Sun et al
[13] explored the effects of RDN on immune cell
mobilization after myocardial I/R injury in mice,
discovered a novel link between sympathetic nervous
system activity and inflammatory response during
myocardial I/R injury, and determined that RDN
counteracts myocardial I/R injury by preserving splenic
immune cell mobilization. RDN pre-emptively blockade
of renal sympathetic efferent and afferent nerves inhibits
myeloid cell recruitment and infiltration and attenuates the
inflammatory response in myocardial I/R-injured mice. In
examining the role of activation of the ventral extrastriate
subnucleus of the ventral hypothalamus in a rat model of
myocardial infarction and its underlying mechanisms, Liu
et al. [l4]found that activation of the ventral
hypothalamus neurons augmented cardiac sympathetic
nervous system activity through the paraventricular
nucleus and superior cervical ganglion. This activation led
to increased catecholamine levels, which subsequently
modulated myosin function and triggered the release of
anti-inflammatory factors, leading to poor cardiac
prognosis. In contrast, denervation of the superior cervical
ganglion effectively blocked sympathetic effects and
improved cardiac prognosis.

2.2 Denervation and hypertension

Currently, the main treatment for renal hypertension
is antihypertensive drugs, and due to poor adherence to
medication and drug tolerance in some patients with
refractory hypertension, catheter-based interventional
therapy such as RDN, has become a new therapeutic
measure. In the last decade, a number of studies have been
conducted on the effectiveness and safety of RDN in
lowering blood pressure. A single-blind, multicenter,
sham-controlled, randomized clinical trial (the
SYMPLICITY HTN-3 trial), which investigated the long-
term outcomes of renal artery denervation in patients with
single-electrode radiofrequency denervation, recruited 535
patients with recalcitrant hypertension at 88 centers in the
United States. At 6-month follow-up, the RDN group met
the primary safety endpoint but did not report an overall
treatment benefit compared with the sham-operated group.
However, after 36 months of follow-up the report not only
demonstrated the safety of renal artery denervation at 36
months postoperatively, but also a greater decrease in
blood pressure and better control of blood pressure from
12 to 36 months postoperatively in patients who received
renal artery denervation compared with those who
received sham control [15]. The large disparity in results
obtained at 6- to 36-month follow-up may be attributable
to the limitations imposed by the first-generation, single-
stage ablation technique, which achieved effective
circumferential denervation in only 6% of study subjects.
Catheter-based RDN of the renal arteries has undergone
significant technical and methodological improvements
after the failed results of the SYMPLICITY-HTN 3 trial in
2014, and the SPYMPLICITY-HTN (SHAM) controlled

randomized trial was conducted, which yielded promising
results. The current 2023 European Society of
hypertension (ESH) guidelines provide recommendations
for catheter-based renal artery RDN for two main areas of
application (1) patients with untreated hypertension, for
whom renal artery denervation is a first-line treatment, and
(2) patients with difficult-to-control or truly resistant
hypertension [16]. When hypertension is combined with
atrial fibrillation, RDN seems to be more effective in the
treatment of hypertension. Zeijen et a/[17] implemented
radiofrequency RDN therapy in 20 patients suffering from
hypertension combined with atrial fibrillation in an
AFFORD study. They detected atrial fibrillation loads
using implantable cardiac monitors and performed 24 h
ambulatory blood pressure testing. After 3 years of follow-
up, the application of RDN was found to reduce blood
pressure in patients with hypertension and symptomatic
atrial fibrillation, but no significant reduction in atrial
fibrillation load was found at the 3-year follow-up.

Regarding how RDN reduces blood pressure and how
RDN affects arterial function, it has been suggested that
RDN affects vascular function by improving endothelial
function, but Rommel et al. [18] noted that the effects of
RDN appear to be independent of hemoglobin levels,
which are thought to affect vascular function through
endothelial mechanisms. Meanwhile, Kiuchi et al. [19]
studied combined denervation of the renal and common
hepatic arteries as a new approach to reduce
cardiometabolic risk in a porcine model and assessed the
feasibility and safety of the approach, and the animals
included in the study were in good health during a 30- to
90-day follow-up period, with no stenosis or abnormalities
of the vasculature and no significant changes in serum
chemistry. Hyperactivation of the sympathetic nervous
system is a crucial factor associated with cardiometabolic
disorders [20].

2.3 Denervation and arrhythmia

In recent years, many studies have used denervation
as an interventional therapy for arrhythmia treatment and
evaluated its safety and efficacy. Vassallo er al [21]
applied high-power short-duration ablation combined with
parasympathetic denervation to treat patients with atrial
fibrillation and used the degree of increase in heart rate to
determine the recurrence rate of atrial fibrillation. In the
long-term follow-up, it was found that patients with a
lower heart rate were prone to recurrence, while patients
with a higher heart rate had a higher maintenance of sinus
rhythm. Zheng et al. [22] found that after radiofrequency
ablation of pulmonary artery denervation in dogs, the low-
frequency component of heart rate variability, serum
norepinephrine, and angiotensin I levels were
significantly reduced, and the refractory period of the right
ventricular outflow tract was shortened. The number of
premature ventricular beats and the number and duration
of tachycardia episodes in the right ventricular outflow
tract induced by left stellate ganglion stimulation were
found to be significantly reduced. Thus, pulmonary artery
denervation ameliorates the shortening of the ventricular
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effective response period and ventricular arrhythmias in
the right ventricular outflow tract induced by left stellate
ganglion stimulation through inhibition of cardiac
sympathetic nerve activity. However, denervation can also
increase the incidence of arrhythmias by affecting
circadian rhythms. Prado ef al. [23] found that loss of
melatonin circadian rhythms after supra carotid
ganglionectomy in rats rendered the heart susceptible to
arrhythmias, predominantly ventricular tachycardia, which
was due to conduction disturbances and repolarization
changes.

2.4 Denervation and heart failure

Many studies have suggested that denervation may be
involved in treating heart failure, improving cardiac
function, and slowing cardiac remodeling. Rommel et al.
[18] found that the application of RDN to patients with
heart failure with ejection fraction-preserved partially
reversed the abnormalities of arterial function, observing
reductions in BP and BP variability. The possible
mechanism may be that the RDN intervention disrupts
afferent and efferent sympathetic fibers along the renal
arteries  sympathetic  fibers, thereby decreasing
sympathetic tone. Pushpakumar et al. [24] found in a
mouse model of heart failure that RDN contributes to the
maintenance of ejection fraction by maintaining eNOS
levels and endocardial endothelial function during heart
failure, and that RDN intervention helps to decrease the
activity of the renal sympathetic afferent-hypothalamic-
renal sympathetic efferent neural circuitry system, which
may contribute to the improvement of left cardiac function
in patients prone to heart failure and cardiac death. Li et al.
[25] found that RDN improved cardiac function in dogs
with post-infarction heart failure in a Beagle model of post-
infarction heart failure.RDN reduced levels of cytokines
and other pro-inflammatory factors in myocardial tissue
and the hypothalamus, which may affect cytokine-induced
CNS excitability in heart failure, and subsequently
sympathetic activity. Polhemus et al. [26] described an
improved post-infarction cellular therapy alternative by
combining treatment with pericardium-derived cells
(CDCs) with RDN for the first time, and showed that
CDCs improved early systolic function. In contrast, RDN

maintained late function and prevented cardiac remodeling.

The left ventricular ejection fraction was maintained at
higher levels when both treatments were given
concurrently than with either CDCs or RDN alone, and that
combining these strategies may have a role in the treatment
of post-infarction injury to attenuate cardiac remodeling
and heart failure progression. Polhemus ef al.[27] found in
a rat model of spontaneous hypertensive heart failure that
receiving bilateral radiofrequency RDN treatment resulted
in reduced left ventricular fibrosis and improved vascular
function compared with controls, suggesting that
radiofrequency RDN treatment significantly improves
responsiveness to endothelium-dependent and
nonendothelium-independent vasodilators and vascular
compliance in severe heart failure, increasing circulating
natriuretic peptide levels and improving left ventricular

function in heart failure. Krim [28] found that autonomic
modulation in heart failure patients with reduced ejection
fraction appears to be safe in the short term, but long-term
safety and efficacy are unproven.

2.5 Denervation and atherosclerosis

Atherosclerosis is a disease of the arterial vasculature
characterized by the narrowing of the arterial lumen due to
the accumulation of subendothelial lipids. Ischemic
cardiac disease and stroke secondary to atherosclerosis are
the two leading causes of death worldwide [29]. Arteries
are innervated by nerves, especially the sympathetic
nervous system, which is important in forming
atherosclerosis. Sympathetic nerves innervate large
arteries and small precapillary arterioles, and the
integration of the efferent activity of the sympathetic
nervous system with the vasculature occurs in the medulla
oblongata of the brainstem, where the hypothalamus and
cerebral cortex regulate its activity. The atherosclerotic
cardiovascular disease manifests in the renal arteries as
renal artery stenosis. Several studies have found that RDN
inhibits atherosclerotic progression. Elevated blood
pressure induces a proinflammatory response and
promotes vascular remodeling and the progression of
atherosclerosis and end-organ damage [30]. A small
clinical study applied RDN treatment to patients with
refractory hypertension and found that RDN had no
adverse effects on renal artery structure at follow-up after
12 months and that control of blood pressure and
improvement of vascular endothelial function after RDN
may even inhibit the progression of atherosclerosis in the
renal arteries [31]. Li et al. [32] performed RDN treatment
in high-fat-fed ApoE knockout mice and found that RDN
inhibited renal arterial progression by decreasing
mitochondrial monoamine oxidase A activity, maintaining
mitochondrial  homeostasis, and reducing ROS
accumulation and NF- k B activation, thereby decreasing
the expression of atherogenic and proinflammatory
molecules in endothelial cells. The possible mechanism is
that the action of RDN on mitochondrial monoamine
oxidase A disrupts the positive feedback regulation
between mitochondrial dysfunction and inflammation,
thereby inhibiting the alteration of the atherosclerotic
phenotype of endothelial cells and the development of
atherosclerosis. Chen et al. [33] found that in ApoE
knockout mice, RDN inhibited the increase of
atherosclerotic plaque size and ameliorated inflammation
in the plaques, reduced the accumulation of circulating
neutrophils and monocytes, and the production of splenic
neutrophils. Monocytes and splenic sympathetic nerve
activity suggest that RDN could treat atherosclerosis as a
potential anti-inflammatory treatment by limiting the
production of splenic immune cells. Some studies have
found that the effects of RDN on atherosclerosis may not
be related to hypertension. Wang et al. [34] found that
RDN attenuated the progression of atherosclerosis in the
mice compared with the sham-operated group when RDN
treatment of ApoE-deficient mice, which may be related to
reduced aldosterone levels, monocyte chemotactic protein-
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1, and markers of oxidative stress.

However, several studies have found that RDN can
increase the risk of atherosclerosis. Chen ef al. [35]
induced arterial pressure reflex dysfunction promoting the
development of atherosclerosis by upstream loss of sinus
aortic innervation in Apoe knockout mice decreased the
expression of VAChT and a7nAChR and significantly
increased the level of oxidative stress and inflammation.
Su et al.[36] found that RDN resulted in the intima of
vascular smooth muscle cells significantly thickened and
significantly promoted endothelin B receptor production,
significantly inhibited the expression of AMPK/Akt/eNOS
signaling pathway proteins, decreased NO production, and
increased the expression of endothelin system proteins,
such as endothelin-1, endothelin-converting enzyme 1,
endothelin A receptor, and ETBR, up-regulated the
expression of NOX2 and 4-HNE proteins, and enhanced
NF-kB activation, which resulted in aggravation of the
endothelial endocrine function of minor endothelial
endocrine dysfunction, intimal thickening, and increased
risk of atherosclerosis in porcine renal arteries. Wang et al.
[37] RDN significantly increased the level of matrix
metalloproteinase-2 expression in angiotensin II-injected
hypertensive ApoE-deficient mice, promoting
atherosclerosis formation.

3. Denervation and cardiac transplantation

Cardiac transplantation is the most effective treatment
for end-stage heart failure. A series of physiologic changes
occur over a period after cardiac transplantation, including
hemodynamic changes, changes in cardiac rhythm, and
changes in responses to exercise. Cardiac transplantation
results in axonal transection of the postganglionic nerve
innervating the heart, and axonal degeneration occurs
within a few days after transplantation, resulting in
complete depletion of the cardiac norepinephrine reserve,
the disappearance of nerve endings in the transplanted
tissue, and complete loss of cardiac innervation [38]. The
heart is usually in a state of complete denervation for 6 to
12 months after cardiac transplantation, and recovery of
cardiac reinnervation is usually found in the second year
after transplantation [38]. Autonomic denervation of the
transplanted heart results in many changes, such as
increased resting heart rate, decreased heart rate variability,
abnormal time-varying responses to exercise, and
excessive bradycardic responses following adenosine
administration [39]. Cardiac denervation and subsequent
loss of sympathetic and parasympathetic regulation are
responsible for various physiologic changes in the
cardiovascular system and limit exercise tolerance in
patients. Restoration of cardiac innervation improves
exercise capacity and quality of life, but the reinnervation
process is only partially restored even several years after
cardiac transplantation [40]. Clinical findings suggest an
elevated resting heart rate of 90-110 beats/min due to loss
of parasympathetic innervation of the donor heart after
transplantation, representing the inherent depolarization
rate of the sinus node [39]. Under a graded exercise test,
heart rate after cardiac transplantation usually does not

increase or has a delayed increase for the first few minutes,
followed by a gradual increase due to loss of sympathetic
innervation of the sympathetic nervous system, with a peak
slightly below normal (averaging about 150 beats/min)
[41]. A study reported that a patient who underwent
sequential heart and kidney transplantation and suffered
from refractory hypertension was treated with autologous
renal artery RDN after a combination of six
antihypertensive medications failed to work and
experienced a significant decrease in systolic and diastolic
blood pressure, suggesting that RDN can be an effective
complementary treatment for lowering blood pressure in
patients who have undergone heart and kidney
transplantation, and can reduce cardiovascular risk[42].

In summary, denervation plays an important role in
CVDs such as myocardial infarction, hypertension,
arrhythmia, atherosclerosis, and heart failure. However, it
is currently understudied in other CVDs such as diabetic
cardiomyopathy, dilated cardiomyopathy, hypertrophic
cardiomyopathy, and myocarditis, which are of significant
research interest. Denervation is clinically crucial in
various CVDs, both as a therapeutic tool and as a clinical
manifestation after cardiac transplantation. Currently, the
hottest study is the intervention of RDN in refractory
hypertension. However, the mechanism of other types of
denervation in various CVDs is still unclear, especially the
effect of RDN on atherosclerosis is controversial and
deserves further exploration. The role of denervation may
become a potential research direction in myocardial
ischemia-reperfusion injury, circadian rhythm of clock
genes, and cardiac transplantation.
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