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Abstract: Objective To analyze and compare the effects of transverse ligament injury on the stability and stress distribution of
atlantoaxial complex fractures using 3D finite element method. Methods A male volunteer with a normal cervical spine was
selected. The cranio-cervical region (CO-C3) was scanned using a 64-slice spiral CT scanner. Software such as Simpleware 3.0,
Geomagic 12.0, and Hypermesh 12.0 were used to create a three-dimensional finite element model (FEM/Intact) of the C0-C3
segment. On the validated model, the anterior and posterior arches of C1 and the base of the odontoid process were fractured
to create a composite fracture model (FEM/Fracture) simulating Jefferson/Type Il odontoid fracture. Two additional models were
created: one with a ruptured transverse ligament of the atlas (FEM/RTL) and another with an intact transverse ligament (FEM/TL).
The models were subjected to loading conditions of flexion, extension, lateral bending, and rotation, and the Von Mises stress
distribution and vertebral segment motion were analyzed for each model under different loading conditions. Results The three-
dimensional nonlinear finite element model of the atlantoaxial complex created in this study had a realistic appearance and
good geometric similarity. The motion of each vertebral segment in the model was consistent with the results of Panjabi's in
vitro experimental analysis. The composite fracture model of Jefferson/Type Il odontoid fracture with or without transverse
ligament injury also had a realistic appearance and good geometric similarity. After combining the transverse ligament injury
with the Jefferson/Type Il odontoid fracture, the instability of the upper cervical spine primarily concentrated at the atlantoaxial
joint, with varying degrees of increased motion in flexion, extension, lateral bending, and axial rotation compared to the normal
group.Conclusion Transverse ligament injury significantly affects the stability and stress distribution of atlantoaxial complex
fractures. The finite element models established in this study can be used for biomechanical analysis of Jefferson/Type Il
odontoid fracture combined with transverse ligament injury, and provide strong theoretical support for the selection of fixation
methods in atlantoaxial complex fractures.
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transverse ligament injury of atlas is not common, while
transverse ligament injury of atlas is common in
atlantoaxial compound fracture.[4] Jefferson/type |l

Background

The transverse ligament of atlas is a tough and thick

ligament, which connects the medial surfaces of the lateral
masses of atlas, with a slightly concave front and a slightly
wide middle. The transverse ligament of atlas has an
articular surface composed of fibrocartilage of atlas, which
is related to odontoid process. Transverse ligament plays
an important role in the stability of atlantoaxial axis,
especially in preventing the atlas from moving forward and
maintaining the normal position of the atlantoaxial
space.[1]. The transverse ligament is mainly composed of
collagen fibers, but less elastic fibers. The collagen fibers
interweave with each other in the central part of the
transverse ligament at an included angle of 30, so the
transverse ligament has high stiffness and insufficient
elasticity.[2] When the odontoid process of the axis is
fractured, dislocation can be effectively prevented if the
transverse ligament of the atlas remains intact.[3]. Simple

odontoid fracture is the most common in atlantoaxial
complex fracture.[5] Jefferson/type I odontoid fracture
can lead to the loss of stability of atlantoaxial complex and
abnormal movement of the motion segment between
atlantoaxial and atlantoaxial.[6] After Jefferson/type I

odontoid fracture of cervical vertebra, it will not only lead
to the loss of stability of atlantoaxial complex, but also lead
to the injury or tear of transverse ligament of atlas, which
may further aggravate the loss of stability of atlantoaxial
complex.[7] However, the effects of the integrity of the
transverse ligament of the atlas on the stability of the upper
cervical spine have not been proved by research. Therefore,
this study intends to use the three-dimensional finite
element model of atlantoaxial complex established in the
previous period.[8] Furthermore, a three-dimensional
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finite element model of Jefferson/type ii odontoid
fracture with or without atlantoaxial ligament injury was
established, and the influence of atlantoaxial ligament
injury on the stability of upper cervical spine was evaluated
by finite element analysis.

1 Material and methods

1.1 Establishment of normal upper cervical vertebra
model and Jefferson/Type // odontoid fracture

finite element model

A 27-year-old healthy male volunteer, weighing 64
kg and with a height of 174 cm, was selected. The
participant had no history of cervical spine trauma or
surgery, and underwent X-ray examination in the open-
mouth position and in the anteroposterior, lateral,
hyperextension, and hyperflexion positions of the cervical
spine to exclude deformities and pathological changes. The
participant had no history of chronic diseases or cervical
spondylosis. After obtaining informed consent, a GE
Lightspeed 64-slice spiral CT (General Electric Company,
USA) was used to perform a scan of the volunteer's
craniocervical region at a slice thickness of 0.625 mm. The
CT data were imported into Simpleware 3.0 software
(Simpleware Ltd, UK) in DICOM format and processed
for segmentation, noise reduction, and filtering to create an
STL triangular mesh model, which was then used in
Geomagic 12.0 (Parametric Technology Corporation, USA)
for surface simulation to generate a NURBS surface model.
The resulting NURBS surface model was processed using
Hypermesh 12.0 (Altair Engineering Inc., USA) for
contact definition, meshing, material assignment, and
boundary constraints. Contact definition: A 2-node
nonlinear spring element was used to establish 12 types of
ligaments (Transverse ligament of the atlas (TLA), Alar
ligament (AL), Anterior atlanto-occipital membrane
(AAOM), Anterior longitudinal ligament (ALL),
Ligamentum flavum (LF), Posterior longitudinal ligament
(PLL), Posterior atlanto-occipital membrane (PAOM),
Capsular ligament (CL), Tectorial membrane (TM), Apical
ligament of the Odontoid process of axis (AP), Supraspinal
ligament (SSL), Interspinous ligament (ISL), totaling 12
ligaments); a nonlinear surface-to-surface general contact
relationship was used to simulate the interaction between
joints. Meshing: Cortical bone was meshed with an
average thickness of 1 mm using C3D6 elements;
trabecular bone was meshed with C3D4 elements; the
endplate was meshed with 0.5 mm thick C3D6 elements;
ligaments were meshed using 2-node SPRINGA spring
elements with only axial translational freedom; the
intervertebral disc was coupled; the skull was set as a rigid
body structure, meshed with C3D8 elements. The mesh
quality Jacobian ratio was controlled above 0.6. Material
properties: Trabecular bone, cortical bone, and the
transverse ligament were assigned with orthotropic
material properties; the remaining ligaments were defined
based on elastoplastic material properties; the
intervertebral disc (including the nucleus pulposus and

annulus fibrosus) was set as an incompressible
hyperelastic material (based on the strain energy theory of
the Mooney-Rivlin hyperelastic material formula,
parameters: C10, C01) [9]. Ligament parameters were
sourced from published references [10], and a normal CO-
C3 segment three-dimensional finite element model
(FEM/Intact) was established. [9][10] Then, on the basis
of the established normal C0O-C3 segment finite element
model, the anterior and posterior arches of C1 were
directly fractured, and the base of the Odontoid process of
axis was cut to simulate a Jefferson/Type Il odontoid
fracture, establishing a complex fracture finite element
model (FEM/Fracture). The Von Mises stress cloud map
and the range of motion (ROM) of each vertebral segment
under the conditions of the fracture and with the transverse
ligament intact and the transverse ligament ruptured were
analyzed, and compared with the normal model.

1.2 Establishment of a Finite Element Model for
Jefferson/Type // odontoid fracture combined

atlantoaxial fracture with Transverse Ligament
Rupture

Dickman [11] classified injuries to the transverse
ligament of the atlas into two types: Type | involves the
rupture of the transverse ligament itself, with Type la being
a midsubstance tear of the ligament and Type Ib being an
avulsion fracture at the ligament's attachment site; Type 11
involves an avulsion fracture at the ligament's attachment
site with a bony component, with Type lla being a
comminuted fracture of the lateral mass of the atlas, and
Type I1b being an avulsion fracture of the superior articular
process of the atlas. Type Il injuries of the transverse
ligament are more complex, and rupture of the transverse
ligament often presents a "whole or none” phenomenon,
lacking the capacity for post-injury repair [2]. To facilitate
the establishment of a finite element model, this study
employed a method of removing the transverse ligament
elements posterior to the Odontoid process of axis to
simulate injuries of the transverse ligament type [12].

1.3 Model Validation and Experimental Loading

The finite element model is imported into the finite
element analysis software Abaqus 6.9. All six degrees of
freedom of the endplate under constraint C3 are taken as
boundary conditions. Select a reference point on the axis
of rotation of the upper cervical vertebra, and establish the
Distribution Coupling of all unit nodes at this reference
point (this constraint method can convert the stress on the
reference point into uniform load and apply it to all slave
nodes). Apply a pure torque of 1.5 nm to the reference
point with global coordinates of X, Y and Z respectively
(X-Y plane is horizontal, X-Z is coronal, and Y-Z is
sagittal), and apply a preload of 50 N and a torque of 1.5 N
m to the occipital bone, so that it can generate flexion,
extension, rotation and lateral flexion. Using Abaqus6.9
software, all units of the model under different working
conditions are displayed in the form of cloud images.
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Different colors represent different stress sizes, and the
size of color areas represents the size of stress distribution
areas, which can show the stress concentration areas of the
model under different loads and working conditions. The
stress nephogram of ROM and Von Mises of each vertebral
segment (C0-C1, C1-C2, C2-C3) under the condition of
fracture and fracture of transverse ligament of atlas were
analyzed, and compared with the normal model.

2 Results

2.1 C0-C3 finite element model and Jefferson/Type
// odontoid fracture combined atlantoaxial fracture
finite element model

The normal CO-C3 finite element model established
in this experiment is visually realistic and has good
geometric similarity. It comprises a total of 211,371
elements and 66,517 nodes (see Figure 1). The range of
motion of each vertebral segment in the model is
essentially in agreement with the analytical results
published by Panjabi [13-14] (see Figure 2). The
reliability and validity of the model have been verified.
Subsequently, on the basis of this model, the anterior and
posterior arches of C1 can be directly fractured along with

the transverse ligament severed at the base of the Odontoid
process of axis, to simulate a Jefferson/Type Il odontoid
fracture, thereby establishing a finite element model for
Jefferson/Type 1l odontoid fracture of the atlantoaxial
complex.

2.2 Jefferson/ll odontoid fracture model of
atlantoaxial complex fracture with intact and broken
transverse ligament, and the mobility of each
vertebral segment

Based on the normal CO-C3 finite element model, a
finite element model for Jefferson/Type Il odontoid
fracture with transverse ligament injury was established.
The comparison of the range of motion (ROM) at the CO-
Cl, C1-C2, and C2-C3 segments under different
conditions between the intact and the transverse ligament
injury models is shown in Figure 3. It can be observed that
the presence or absence of transverse ligament injury has
no significant effect on the ROM of the C0-C1 segment
during flexion, extension, and lateral bending. However,
the model with combined transverse ligament injury
exhibited an increased torsion of 3.5°, which is a 35.2%
increase. The presence or absence of transverse ligament
injury affects the ROM of the C1-C2 segment

Fig. 1 Normal CO-C3 Finite Element Model
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Fig. 2 Activity of each vertebral segment in the finite element model of the atlas axis complex

under various conditions. The model with combined

transverse ligament injury showed an increased ROM of
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12.3° in flexion combined with extension, 0.3° in lateral
bending (left and right), and 5.5° in rotation, representing
increases of 34.9%, 3.9%, and 7%, respectively. After
complex fractures of the atlantoaxial joint, instability of the
upper cervical spine, particularly at the atlantoaxial joint,
is caused by injuries to the transverse ligament. During
flexion and extension movements, there is a significant
increase in joint ROM, and the stability of the upper
cervical spine is also markedly reduced [15]. It can be seen
from the figure that after injury to the transverse ligament,
there is a noticeable increase in the ROM of the C1-C2
segment. This further confirms that if a Jefferson/Type Il
odontoid fracture is combined with an injury to the
transverse ligament, it will have a significant impact on the
stability of the atlantoaxial joint, especially during flexion
and extension [16].

2.3 Comparison of Stress Distribution in Upper
Cervical Spine Models with Transverse Ligament
Injury Combined with Jefferson/Type 1l odontoid
fracture versus Models without Transverse Ligament
Injury

A preload of 50 N and a torque of 1.5 N-m were
applied to the occipital bone, and the stress distribution
under various motions was compared between the
Jefferson/Type Il odontoid fracture model with transverse
ligament injury of the atlas and the model without
transverse ligament injury (see Figure 4). In the model with
transverse ligament injury, the maximum stress during
flexion and extension appeared in the region of the superior
articular surface of C1 and C2, which increased by 0.86
MPa and 1.78 MPa, respectively, compared to the intact
model. This is because, after injury to the transverse
ligament of the atlas, the restraining effect of the transverse
ligament on the Odontoid process of axis is lost, leading to
a decrease in the force acting on the anterior arch of the
atlas and an increase in the interaction of the atlanto-

occipital joint, thereby increasing the maximum stress [17].

During lateral bending and axial rotation, the impact of
transverse ligament injury on the stress distribution of the
upper cervical spine model was minimal because the
primary function of the transverse ligament is to prevent
anterior dislocation of the atlas [18]. Additionally, after a
Jefferson/Type 11 odontoid fracture has occurred, the
ability of the atlantoaxial joint to maintain rotation is
essentially lost; therefore, the presence or absence of injury
to the transverse ligament has little impact on the
instability of the upper cervical spine during lateral
bending and axial rotation in the context of a
Jefferson/Type 11 odontoid fracture.

Flexion+Extension (ROM)

co-C1 C1C2 €2-C3
B Nomal

m Jefferson/II odontoid fracture without Transverse Ligament.
Jefferson/II odontoid fracture with Transverse Ligament.

Left bending+Right bending (ROM)

Co-C1 C1C2 Cc2C3

o Nomal
m Jefferson/II odontoid fracture without Transverse Ligament.
Jefferson/II odontoid fracture with Transverse Ligament.

Left torsion+Right torsion (ROM)

Co-C1 Cic2 C2C3

o Nomal
m Jefferson/II odontoid fracture without Transverse Ligament.
Jefferson/II odontoid fracture with Transverse Ligament.

Fig. 3 Comparison of joint mobility between transverse
ligament injury model and non-destructive model
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Fig. 4 Comparison of stress distribution between intact and fractured transverse ligaments in composite fractures of the atlas axis
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3 Discussion

3.1 Anatomical characteristics of the transverse ligament
of the atlas

The transverse ligament of the atlas attaches laterally
to the tubercles on both sides of the lateral masses of the
atlas and medially to the posterior part of the Odontoid
process of axis of the axis, forming the atlantoaxial joint
together with the anterior arch of the atlas, the lateral
masses, and the Odontoid process of axis of the axis. The
stability between the atlas and axis is primarily maintained
by intact ligamentous structures [19]. The transverse
ligament plays a role in maintaining joint stability and
limiting excessive joint motion. It divides the spinal canal
of the atlas into an anterior and a posterior part, with the
anterior part accommodating the Odontoid process of axis
and the posterior part housing the spinal cord and its
membranes. Additionally, it also serves to limit posterior
displacement of the odontoid process of axis [19]. Injury
to the transverse ligament can lead to instability between
the atlas and axis, potentially resulting in anterior
dislocation of the atlas, which can severely injure the
medulla oblongata, leading to high-level quadriplegia or
even death in patients [20]. The stability of an atlantoaxial
complex fracture mainly depends on the condition of the
transverse ligament and the alar ligaments. The transverse
ligament is crucial for fixing the Odontoid process of axis,
stabilizing the atlantoaxial joint, and maintaining tension
between the bilateral lateral masses of the atlas. If the
transverse ligament is not damaged, the separation and
displacement of the two lateral masses will be limited, and
the total lateral displacement of both sides must be less
than 6.9 mm. However, if the transverse ligament is
completely ruptured, the two lateral masses will lose
ligamentous control, leading to centrifugal separation and
displacement greater than 6.9 mm, thereby exacerbating
instability in the region [21].

3.2 The Anatomical Characteristics of Jefferson/Type 1l
odontoid fracture and the Impact of the Presence or
Absence of the Transverse Ligament on Its Stability

Jefferson/Type Il odontoid fracture of the
Atlantoaxial Complex is a special type of atlantoaxial
complex fracture, accounting for approximately 12% of
Odontoid process of axis fractures [22]. It is characterized
by a fracture line that involves the junction between the
Odontoid process of axis and the body of the axis. This
type of fracture is usually caused by sudden axial vertical
force applied to the atlas while a flexion force is applied to
the axis Odontoid process of axis [23]. Jefferson/Type Il
odontoid fracture can lead to the loss of stability of the
atlantoaxial complex, resulting in abnormal motion
between the atlas and axis [24]. After the occurrence of
Jefferson/Type Il odontoid fracture, the cervical spine not
only loses stability of the atlantoaxial complex and exhibits
abnormal motion between the atlas and axis, but it may
also lead to injury or rupture of the transverse ligament,

further exacerbating the loss of stability of the atlantoaxial
complex [25]. This study constructed a finite element
model of Jefferson/Type Il odontoid fracture combined
with transverse ligament injury of the atlas and performed
comparative analysis on the range of joint motion and
stress distribution. The results showed that after injury to
the transverse ligament, the range of motion of the
atlantoaxial joint increased under various activities. The
simulation results further confirmed that injury to the
transverse ligament would significantly alter the range of
motion of the atlantoaxial joint, which is consistent with
the conclusion that the atlas is prone to anterior dislocation
after injury to the transverse ligament [3, 18, 12].

3.3 Problems in finite element analysis of Jefferson/ Type
I odontoid fracture complicated with transverse ligament
injury

The finite element model established in this study
aims to delve into the biomechanical characteristics of
Jefferson/Type 1l odontoid fracture combined with
transverse ligament injury of the atlas. The application of
this model extends beyond the analysis of fractures and
transverse ligament injuries; it also provides robust
theoretical support for the selection of fixation methods for
upper cervical spine injuries in atlantoaxial complex
fractures. However, the model does have certain
limitations. The atlantoaxial complex, as a complex
structure, has biomechanical properties that are not solely
dependent on bones and ligaments but are also
significantly influenced by muscles and soft tissues. Due
to technical constraints, the model in this study did not
fully incorporate these factors, which may result in
discrepancies between the simulated range of motion
(ROM), stress distribution, and actual conditions.
Furthermore, this  experiment only  simulated
Jefferson/Type 1l odontoid fractures, whereas the fracture
patterns of the atlantoaxial complex may be more intricate.
Additional research and simulation are required for other
types of atlantoaxial complex fractures combined with
transverse ligament injuries to more comprehensively
elucidate the biomechanical properties of the atlantoaxial
complex and the transverse ligament. Additionally, the
model developed in this study is a normal three-
dimensional nonlinear finite element model of the upper
cervical spine, without consideration for individual
variations such as cervical spine degeneration and
osteoporosis. Nevertheless, this model still provides a
valuable research foundation and direction for future
studies.
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Abstract: Objective To analyze and compare the effects of transverse ligament injury on the stability and stress
distribution of atlantoaxial complex fractures using 3D finite element method. Methods A male volunteer with a normal
cervical spine was selected. The cranio-cervical region ( CO-C3) was scanned using a 64-slice spiral CT scanner.
Software such as Simpleware 3.0, Geomagic 12.0, and Hypermesh 12.0 were used to create a three-dimensional finite
element model (FEM/Intact) of the CO-C3 segment. On the validated model, the anterior and posterior arches of C1 and
the base of the odontoid process were fractured to create a composite fracture model ( FEM/Fracture) simulating
Jefferson/Type II odontoid fracture. Two additional models were created: one with a ruptured transverse ligament of the
atlas (FEM/RTL) and another with an intact transverse ligament (FEM/TL). The models were subjected to loading
conditions of flexion, extension, lateral bending, and rotation, and the Von Mises stress distribution and vertebral
segment motion were analyzed for each model under different loading conditions. Results  The three-dimensional
nonlinear finite element model of the atlantoaxial complex created in this study had a realistic appearance and good

geometric similarity. The motion of each vertebral segment in the model was consistent with the results of Panjabi’s in
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vitro experimental analysis. The composite fracture model of Jefferson/Type II odontoid fracture with or without
transverse ligament injury also had a realistic appearance and good geometric similarity. After combining the transverse
ligament injury with the Jefferson/Type II odontoid fracture, the instability of the upper cervical spine primarily
concentrated at the atlantoaxial joint, with varying degrees of increased motion in flexion, extension, lateral bending,
and axial rotation compared to the normal group. Conclusion Transverse ligament injury significantly affects the
stability and stress distribution of atlantoaxial complex fractures. The finite element models established in this study can

be used for biomechanical analysis of Jefferson/Type Il odontoid fracture combined with transverse ligament injury, and

provide strong theoretical support for the selection of fixation methods in atlantoaxial complex fractures.

Keywords: Finite element; Atlas; Axis; Fracture; Atlantoaxial transverse ligament; Fracture stability
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