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Inhalation anesthetics are characterized by their
sedative, analgesic, and muscle relaxant properties.
Therefore, they are particularly suited for surgeries or
diagnostic procedures that are less stimulating and
short-duration. Moreover, inhalation anesthetics are often
preferred for patients with obesity, the elderly, and those
with liver or kidney dysfunction. Variations in sensitivity
to inhalation anesthetics are not only closely related to the
depth of anesthesia but also affect postoperative outcomes
[1]. Increased sensitivity to inhalation anesthetics can
lead to overly deep anesthesia, circulatory suppression,
delayed awakening, impaired neurological function, and
even increased mortality [2]. Conversely, reduced
sensitivity to inhalation anesthetics may result in too-light
anesthesia, leading to intraoperative awareness,
interference with surgical procedures, circulatory and
neurological complications, and even death [3]. However,
the mechanisms underlying the sensitivity to inhalation
anesthetics are not fully understood.

Research has shown differences in sensitivity to
inhalation anesthetics in experimental animals and
humans. Specific genetic mutations have been linked to
the inhalation anesthetics sensitivity in experimental
animals such as fruit flies, nematodes [4], and mice [5], as
well as in humans [6-7]. Studies indicate that ion
channels or receptors [8], metabolites [9], and
mitochondrial function [10-11] can influence the
sensitivity to inhalation anesthetics in both experimental
animals and humans. Investigating these areas could
further elucidate the mechanisms underlying the
sensitivity to inhalation anesthetics and the overall
mechanism of general anesthesia. In light of this, this
article will review the mechanisms of inhalation
anesthetic sensitivity from the perspectives of gene
mutations, ion channels or receptors, metabolites, and
mitochondrial function.

1. Sensitivity to inhalation anesthetics and genetic
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mutations

1.1 Sensitivity to inhalation anesthetics and
non-mitochondrial related genetic mutations

Syntaxin, a protein involved in the docking and
fusion of synaptic vesicles in the presynaptic active zones,
can undergo mutations due to various genetic deletions.
However, different gene deletions result in distinct
sensitivities to isoflurane in fruit flies. For instance, the
deletion of syxKARRAA leads to a mutation in
syntaxin-1A protein, making fruit flies sensitive to
isoflurane, whereas the deletion of syxH3-C results in a
mutation in syntaxin 1A protein that makes fruit flies
tolerant to isoflurane. This mechanism may be related to
isoflurane targeting synaptic release and sleep pathways
[12-13]. Knocking out or mutating the shank3 gene
significantly reduces the minimum alveolar concentration
(MAC) and median effective concentration (ECso) of
isoflurane in mice, thereby increasing their sensitivity to
isoflurane. This mechanism may be related to the reduced
expression of the NRI and postsynaptic density
protein-95 (PSD-95) genes in the central nervous system
[14]. The js127, an allele of acetylcholinesterase-1,
encodes adenylyl cyclase in nematodes, the mutation of
js127 can increase the levels of adenosine monophosphate
(AMP). Research has found that the ECso of isoflurane
for js127 mutant nematodes is three times that of wild
type, significantly increasing their sensitivity to
isoflurane. Thus, specific genetic mutations are related to
the sensitivity of experimental animals to inhalation
anesthetics.

A study involving 500 patients undergoing
abdominal surgery, using whole-exome sequencing (WES)
to analyze venous blood from patients with different
sensitivities to sevoflurane, identified four genes with
eight single nucleotide polymorphism (SNP) sites: FAT2
(SNP rs174272, rs174271, and rs174261), ADI1 (SNP
rs117278), NEDD4 (SNP rs70048, rs70049, and rs70056),
and FOXRED2 (SNP rs144281), which were related to
the sensitivity to sevoflurane [7,15].

1.2 Sensitivity to inhalation anesthetics and
mitochondrial genome mutations

The literature reports that knocking out the NDUFS4
subunit of mitochondrial complex I in mice significantly
increases their sensitivity to inhalation anesthetics,
reducing their MAC value by more than 50%. This is the
most considerable change in the potency of inhalation
anesthetics at the whole-animal level in research in vivo
[16]. The gas-1 gene encodes a subunit of mitochondrial
complex I, and mutations in the gas-1 gene can affect
mitochondrial function. Studies using Caenorhabditis
elegans as the research subjects found that oxidative
phosphorylation and ATP production were not related to
the sedative effects of inhalation anesthetics. However,
accompanying mutations in the gas-1 gene, oxidative
phosphorylation and ATP production increased the

sensitivity of inhalation anesthetics [17]. Thus, changes in
mitochondrial function by oxidative damage are related to
the sensitivity of Caenorhabditis elegans to inhalation
anesthetics. Another study showed that the gas-1 gene in
mitochondrial complex I and the mev-1 gene in
mitochondrial complex II were involved in the electron
transfer process of the mitochondrial respiratory chain.
Mutations in these two genes affect mitochondrial
function, affecting the susceptibility to inhalation
anesthetics in Caenorhabditis elegans. This suggests that
mitochondrial complex I and mitochondrial complex II
affect the behavior of experimental animals, which is
similar to the mechanism of the organ-protective effect of
inhalation anesthetics. Mitochondrial complex I and
mitochondrial complex II affect the behavior of
experimental animals, similar to the organ protective
mechanism of inhalation anesthetics [18].

2. Sensitivity to inhalation anesthetics and ion
channels or receptors

2.1 Sensitivity to inhalation anesthetics and ion
channels

In excitable cells, the two-pore domain potassium
(K2p) channels are crucial for background potassium
currents. Kop consists of two subunits, each with four
transmembrane spanning regions and two pore-forming
regions. Numerous studies have indicated Kzp channels
are involved in the mechanism of sensitivity to inhalation
anesthetics. TRESK channels, a subtype of Kop channels,
were found to be related to sensitivity to isoflurane in
mice. Morphological and behavioral methods were used
to assess the differences in sensitivity to inhalation
anesthetics between TRESK channel knockout mice
(using homologous recombination techniques) and
wild-type mice, and found that compared to wild-type
mice, TRESK channel knockout mice had increased
sensitivity to pain and an increased MAC value,
indicating that the TRESK channel is related to the
sensitivity of mice to isoflurane. This study also
demonstrated that the TRESK channel was a target of
inhalation anesthetics [19]. TREK-1 is the most
extensively studied Kap channel and plays a critical role
in the cellular mechanisms of neuroprotection, anesthesia,
pain, and depression. Recent research has shown that
mice with TREK-1 and TREK-2 gene knockouts are not
resistant to halothane or isoflurane, suggesting that the
absence of TREK channels does not alter the sensitivity
to inhalation anesthetics in mice. Therefore, the influence
on sensitivity to inhalation anesthetics might be mediated
by other channels [§].

In the central and peripheral nervous systems, the
Navl.6 ion channels are the major voltage-gated sodium
channels, encoded by the Scn8a gene. The Navl.6 ion
channel plays a significant role in generating persistent
and resurgent currents and is expressed throughout the
entire mouse brain, including the cerebellum,
hippocampus, frontal cortex, and basal ganglia [20]. One
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study using mice with reduced activity of Navl.6 ion
channels due to mutations in the Scn8amedmed’ and
Scn8a®®' genes showed that these mice exhibited
significantly increased sensitivity to inhaled anesthetics.
Thus, the Navl.6 ion channel is involved in the
mechanism of sensitivity to inhalation anesthetics in mice,
and may serve as a target for inhalation anesthetics [20].
2.2 Sensitivity to inhalation anesthetics and
receptors

Scholars found that changes in glutamate receptors
with age were associated with increased sensitivity of dog
to inhaled anesthetics [21]. They also discovered that the
MAC value for isoflurane was approximately 1.82% in
dogs aged 2-3 years, whereas it was approximately 1.45%
in dogs with 11-year-olds. Further studies found that
elderly dogs had reduced binding sites for glutamate and
diazepam on NMDA receptors in the cerebral cortex and
hippocampus, which may be related to differences in
MAC values in experimental animals. This could be one
of the reasons for the differences in sensitivity to
inhalation anesthetics among experimental animals [21].
Varnds et al. [22] observed that metabolic glutamate
receptor 5 (mGluRS5) radioligands might have an affinity
for monoamine oxidase-B (MAO-B), and their binding
could be sensitive to sevoflurane anesthesia in a positron
emission tomography study. This observation suggests
that sevoflurane anesthesia can inhibit the binding of
radioligands to MAO-B in primate brains, which might
be related to the mechanism of action and sensitivity to
sevoflurane. Research has also confirmed that glycine
receptors are one of the targets for the anesthetic effect of
inhalation anesthetics [5]. In summary, the impact of
specific receptor functions is related to the sensitivity of
experimental animals to inhalation anesthetics.

3. Sensitivity to inhalation anesthetics and
metabolites

Study found that after 2 h of sevoflurane anesthesia,
the types of polyunsaturated fatty acids in monkey
decreased significantly, and the body showed an
inflammatory response, indicating that sevoflurane
anesthesia disturbed lipid metabolism [23]. Another study
using sevoflurane anesthesia to induce unconsciousness
in patients, observed that sevoflurane anesthesia affected
cerebral blood flow in patients, altering metabolites and
metabolic connections in regions such as the frontal lobe
and hypothalamus using electroencephalography (EEG),
positron emission tomography scanning, and functional
magnetic resonance imaging techniques [24]. These
findings indicate that changes in systemic or local tissue
metabolites may be involved in the mechanism of
sevoflurane anesthesia. Glutamate, one of the primary
excitatory neurotransmitters in the central nervous system,
is involved in the mechanism of action of inhalation
anesthetics [25]. Studies have shown that intermittent
exposure to hypoxia reduces the sensitivity of mice to

sevoflurane anesthesia by enhancing the
O-GIcNAc-dependent regulation of the
glutamate-glutamine cycle in the brain [26]. This suggests
that glutamate and its related metabolism may be related
to the sensitivity of experimental animals to inhalation
anesthetics.

A study of 500 patients undergoing abdominal
surgery, metabolomics techniques were used to examine
the preoperative 2-hour plasma of patients with different
sensitivities to sevoflurane. The levels of L-glutamine,
pyroglutamic acid, L-selenocysteine, and sphingosine
were related to patients’ sensitivity to sevoflurane [9].
This indicates that changes in metabolites are involved in
the differences in human sensitivity to sevoflurane.

Nitric oxide (NO) is a neurotransmitter in the central
nervous system that regulates receptors related to general
anesthesia, including y-aminobutyric acid (GABA) 7],
NMDA P8 and acetylcholine receptors [29]. NO can
induce various downstream targets, including guanylate
cyclase (GC), the activation of NO, and cyclic guanosine
monophosphate (¢cGMP) produced by GC. cGMP is a
second messenger that can regulate synaptic plasticity in
the mammalian brain. Studies have shown that the
NO-cGMP signaling pathway is related to the sensitivity
of mice to isoflurane by observing the concentration of
isoflurane required for the loss and recovery of the
righting reflex in mice 3%,

4. Sensitivity to inhalation anesthetics and
mitochondrial function

Inhalation anesthetics have been confirmed to exert
organ-protective effects by affecting mitochondrial
function and producing organ protection. An animal study
found that inhibiting mitochondrial complex I was an
essential mechanism for the differences in sensitivity to
inhalation anesthetics [11]. Ninety-one children aged 6
months to 16 years undergoing diagnostic muscle biopsy
for mitochondrial diseases were selected for a clinical
trial, and sevoflurane was used as the only sedative for
anesthesia and maintenance. The end-tidal concentration
of sevoflurane required to maintain the same depth of
anesthesia was significantly lower in patients with
mitochondrial complex I defect compared with patients
with other mitochondrial defects and normal patients.
This indicates that patients with mitochondrial complex 1
defect have an increased sensitivity to sevoflurane [10].
In summary, mitochondrial function is involved in the

sensitivity of animals and humans to inhalation
anesthetics.
5. Outlook

In conclusion, the sensitivity to inhalation

anesthetics is related to the postoperative outcomes of
patients, making the study of this scientific issue of
significant clinical importance. Current research indicates
that the sensitivity to inhalation anesthetics is associated
with various factors, including genetic mutations, ion
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channels or receptors, metabolites, and mitochondrial
energy metabolism. Focusing research efforts on these
areas not only promises to further reveal the mechanisms
behind the sensitivity to inhalation anesthetics but also
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